【xdoj难题集】1102 xry111挂灯笼

这道题虽然做对的不多,但是我倒是做的异常顺利,直接一遍过,感觉在经历了pfunction之后已经领悟了新一层的dp技巧。

说说思路,就是dp递推,关键是掌握如何递推,首先考虑只有一个挂钩的情况,这时候对于灯笼i的情况,只要把两个儿子数量相加为i-1的情况相乘的结果加起来即可(也就是一个卷积),然后考虑挂钩,如果有k个挂钩,那么这时候总挂钩数量为i的情况就是1的时候和k-1的时候的一个卷积。所以只要200的三次方即可完成(当然用fft更快,不过没必要)。

感觉这道题主要是想法很重要。代码倒是没什么细节问题。

# include <stdio.h>

typedef long long ll;

const int Mod = 1e9 + 7;
const int MAX_N = 205;

ll d[MAX_N + 1][MAX_N + 1];

int main()
{
	int i, j, k;
	
	for(i = 1 ; i <= MAX_N ; i++)
		d[i][0] = 1;

	for(i = 1 ; i <= MAX_N ; i++)
	{
		for(j = 0 ; j < i ; j++)
		{
			d[1][i] += d[1][j] * d[1][i - 1 - j];
			d[1][i] %= Mod;
		}
	}

	for(k = 2 ; k <= MAX_N ; k++)
	{
		for(i = 1 ; i <= MAX_N ; i++)
		{
			for(j = 0 ; j <= i ; j++)
			{
				d[k][i] += d[k - 1][j] * d[1][i - j];
				d[k][i] %= Mod;
			}
		}
	}

	int N, M;
	while(~scanf("%d %d", &N, &M))
		printf("%lld\n", d[N][M]);
	
	return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页