这道题虽然做对的不多,但是我倒是做的异常顺利,直接一遍过,感觉在经历了pfunction之后已经领悟了新一层的dp技巧。
说说思路,就是dp递推,关键是掌握如何递推,首先考虑只有一个挂钩的情况,这时候对于灯笼i的情况,只要把两个儿子数量相加为i-1的情况相乘的结果加起来即可(也就是一个卷积),然后考虑挂钩,如果有k个挂钩,那么这时候总挂钩数量为i的情况就是1的时候和k-1的时候的一个卷积。所以只要200的三次方即可完成(当然用fft更快,不过没必要)。
感觉这道题主要是想法很重要。代码倒是没什么细节问题。
# include <stdio.h>
typedef long long ll;
const int Mod = 1e9 + 7;
const int MAX_N = 205;
ll d[MAX_N + 1][MAX_N + 1];
int main()
{
int i, j, k;
for(i = 1 ; i <= MAX_N ; i++)
d[i][0] = 1;
for(i = 1 ; i <= MAX_N ; i++)
{
for(j = 0 ; j < i ; j++)
{
d[1][i] += d[1][j] * d[1][i - 1 - j];
d[1][i] %= Mod;
}
}
for(k = 2 ; k <= MAX_N ; k++)
{
for(i = 1 ; i <= MAX_N ; i++)
{
for(j = 0 ; j <= i ; j++)
{
d[k][i] += d[k - 1][j] * d[1][i - j];
d[k][i] %= Mod;
}
}
}
int N, M;
while(~scanf("%d %d", &N, &M))
printf("%lld\n", d[N][M]);
return 0;
}