机器学习
untilyouydc
月份未到你也得接受
展开
-
时间序列预测系列2
时间序列预测系列2 本文是时间序列预测的第二篇。 第一篇讲的是如何利用LSTM预测沪深指数的收盘价,其中我们只用收盘价作为输入数据。但其实这种做法并不完美,因为我们买股票的时候,并不只盯着收盘价的变化来分析,我们往往还会看收盘价,最高价,最低价,交易量等因素。 因此本文将介绍,如何利用一支股票的多个因素(最高价,最低价,开盘价,收盘价,交易量…)来预测股票的收盘价。基础的模型仍然是LSTM。 数据读取 本次实验使用中国黄金的历史数据。数据可以从下面的链接获取。 链接:https://pan.baidu.c.原创 2020-07-21 20:23:34 · 660 阅读 · 4 评论 -
时间序列预测系列1
时间序列预测系列1 本文是时间序列预测的第一篇,从最简单的使用LSTM来预测沪深300指数的收盘价。数据中只使用沪深300指数的收盘价,不考虑其他因素(开盘价,交易量等)。 本文没有使用到高级的技术,仅仅只是调用一下LSTM而已,但对刚刚入门的人来说,学习如何处理数据,如何利用Keras搭建模型,是非常有用的。 当熟悉了如何处理数据,如何搭建模型以后。后面很多实验就能很快实现了。 基本的LSTM预测 使用LSTM搭建模型,数据集使用沪深300指数的收盘价。 时间步长T(即由前T天的数据,预测T+1天),.原创 2020-07-21 18:13:53 · 614 阅读 · 1 评论 -
k邻近算法实现
k邻近算法实现 前言 k邻近算法是经典的机器学习算法,也是较为简单的一种。它的基本思想非常简单,去寻找与之最相近的一些点,根据这些点的性质,判断新点的性质。实现k邻近一般有两种方法,暴力计算和基于KD树的算法。 暴力计算 简而言之,直接遍历所有点,计算新点与这些点的距离,然后选出距离最相近的k个点。再根据这k个点的性质来做出判断。 基于KD树的实现 首先,需要了解KD树的思路。由于已经存在讲解非常好的博客,这里不在叙述KD树的思路,可以参考博客:KD树算法思路 KD树算法图解 本博客主要介绍如何用代码实现.原创 2020-06-17 21:45:52 · 623 阅读 · 0 评论 -
tensorFlow安装教程
1. 打开pycharm(确保python为3.5以上)2. 命令行输入 pip install tensorflow3. 如果没有翻墙的话,速度会比较慢,所以建议使用清华镜像进行下载:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow...原创 2018-04-25 20:15:22 · 221 阅读 · 0 评论