- 博客(9)
- 收藏
- 关注
原创 基于Qt5实现的Windows计算器
基础计算:加、减、乘、除、小数点、正负、等于,科学计数法;复杂计算:分数、平方、开根号、百分号;清除操作:CE - 清除输入数字屏;C - 清除所有;back - 删除单个输入数字;:计算过程保存到小屏幕,输入数字在大屏;:调用QKeyEvent自带的事件,实现从键盘键入,实现计算。
2023-04-25 12:04:40
284
原创 论文笔记--一种基于深度学习的上帝类检测方法
软件应用过程中产品需求的变更会导致程序设计之初设计好的代码框架需要不断地调整以实现功能的变更,长此以往程序将逐渐偏离原有的框架,使得程序变得难以维护。对于这样的问题提出了软件重构对此类软件进行优化,在不改变外部特性的前提下提高软件的设计质量,进而提高软件的可维护性和可拓展性。为了确定应该在程序的何处进行重构,Fowler提出代码坏味的概念。一共提出了22种代码坏味。本文中仅针对上帝类这一种代码坏味进行深入研究。上帝类是指某个承担了本应由多个类分别承担的多个职责的类,违背了单一职责的设计原则。
2023-03-05 14:54:28
262
1
原创 论文翻译-Finding key classes in object-oriented software systems by techniques based on static analysis
背景:软件维护由程序理解活动负担,这些活动消耗了大部分项目资源。程序理解很困难,因为要分析的代码非常大,文档可能没有很好的结构来帮助浏览代码。目的:工具应该支持程序理解的早期阶段。我们的目标是构建分析代码并过滤大量信息的工具,以便仅将最重要的信息呈现给软件维护团队。在面向对象系统的情况下,找到重要信息意味着找到最重要的类,也称为系统的关键类。方法:在这项工作中,我们制定并探索了几个假设,哪些是表征重要类别的类别属性。按类属性,我们在这里了解量化类属性的不同度量,例如它与其他类的连接和关系。
2023-03-05 14:54:00
259
原创 翻译Automatic detection of Long Method and God Class code smells through neural source code embeddings
代码异味是代码中经常损害其质量的结构。手动检测代码气味具有挑战性,因此研究人员提出了许多自动检测器。 传统的代码气味检测器采用基于度量的启发式方法,但研究人员最近采用了基于机器学习 (ML) 的方法。本文比较了多个基于 ML 的代码异味检测模型与多个基于度量的启发式算法检测 God Class 和 Long Method 代码异味的性能。 我们评估 ML 的不同源代码表示的有效性:我们评估传统使用的代码度量对代码嵌入(code2vec、code2seq 和 CuBERT)的有效性。
2023-03-05 14:52:46
163
原创 论文翻译-Applying Software Metrics to RNN for Early Reliability Evaluation
结构建模是软件可靠性建模的重要分支,用于早期的可靠性工程,用来优化架构设计并指导后续测试。与使用测试数据的传统模型相比,由于缺乏实际数据,结构模型通常难以应用。本文提出一种基于软件度量的方法用于实证研究。递归神经网络(RNN)用于处理度量数据,以识别容易出错的代码块,并且指定的聚合方案用于计算模块的可靠性。在此基础上,提出了框架工作来评估实际项目的整体可靠性,其中引入代数工具来自动准确地构建结构可靠性模型。对于两个开源项目的研究表明,基于此框架的早期评估效果是有效的,相关方法具有良好的适用性。
2023-03-05 14:49:44
90
原创 hash表 C++的使用以及理解
哈希表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
2023-03-05 14:47:33
312
空空如也
eclipse安装插件JDeodorant引发的问题
2023-03-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人