自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 文献中的符号含义

sup 上确界inf 下确界:= 定义为argmin 使后面式子达到最小值时变量的取值argmax 使后面式子达到最大值时变量的取值i.e. 换句话说(in other word)

2021-04-04 21:03:25 579

原创 Teamview免费版连接超限解决办法

@Teamview免费版显示连接超限解决办法Teamview免费版连接超限解决办法最近遇到TeamView登录时,显示连接设备超过限制的问题,网上搜索的解决办法有:1、删除现有账户;2、使用工具上述方法比较不适用本人,方法1—会导致原始账户中的信息会丢失,方法2—很麻烦。。。。一种新的解决方式为了原账户中的相关信息不被清楚,最好的办法是删除之前信任的设备操作如下1、首先进入TeamView的控制台(网址:https://login.teamviewer.com/nav/home)在图中可

2021-03-06 12:01:21 3648

转载 IEEE PDF格式检查

IEEE PDF格式检查提交IEEE论文的时候,需要用IEEE进行PDF格式检查。遇到了各种新罗马字体没有嵌入的情况,网上了找了一篇很简单的解决办法,原文链接如下:https://segmentfault.com/a/1190000000530573?utm_source=tag-newest方便以后查看:只要以下三步就可以通过检查啦!...

2020-03-12 09:35:06 1369

原创 Boosting

AdaboostAdaBoost-注意两个值:1、预设错误率;2、指定的最大迭代次数。算法主要分为以下3步:1).假设有N个训练样本数据,初始时给每个训练样本赋予相同的权值:1/N。2).训练弱学习器。在训练过程中,如果某个样本点已经被准确地预测,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地预测,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一...

2019-11-22 12:01:32 158

转载 Bagging和Boosting 概念及区别

Bagging和Boosting 概念及区别  Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本)。1、Bagging (bootstrap aggregating)Ba...

2019-11-21 21:43:40 253

原创 随机森林回归算法

随机森林回归算法原理随机森林回归模型由多棵回归树构成,且森林中的每一棵决策树之间没有关联,模型的最终输出由森林中的每一棵决策树共同决定。随机森林的随机性体现在两个方面:1、样本的随机性,从训练集中随机抽取一定数量的样本,作为每颗回归树的根节点样本;2、特征的随机性,在建立每颗回归树时,随机抽取一定数量的候选特征,从中选择最合适的特征作为分裂节点。算法原理如下:(a)从训练样本集S中随机...

2019-11-20 16:48:11 34296

原创 回归模型评价

评价回归模型的好坏均方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)误差平方和(SSE)决定系数(R-square)回归的有:RMSE(平方根误差)、MAE(平均绝对误差)、MSE(平均平方误差)、Coefficient of determination (决定系数)均方误差(MSE)MSE(Mean Squated Error)叫做均方误差。公式如下图:直接用 真实值-预测...

2019-11-19 10:57:33 1749 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除