标题: 分巧克力
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
这道题其实挺水的,就是挨个判断就行了,时间复杂度也仅为O(n),在最大数值仅为100000的情况下是完全不会超时的
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long a[316]={1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529,576,625,676,729,784,841,900,961,1024,1089,1156,1225,1296,1369,1444,1521,1600,1681,1764,1849,1936,2025,2116,2209,2304,2401,2500,2601,2704,2809,2916,3025,3136,3249,3364,3481,3600,3721,3844,3969,4096,4225,4356,4489,4624,4761,4900,5041,5184,5329,5476,5625,5776,5929,6084,6241,6400,6561,6724,6889,7056,7225,7396,7569,7744,7921,8100,8281,8464,8649,8836,9025,9216,9409,9604,9801,10000,10201,10404,10609,10816,11025,11236,11449,11664,11881,12100,12321,12544,12769,12996,13225,13456,13689,13924,14161,14400,14641,14884,15129,15376,15625,15876,16129,16384,16641,16900,17161,17424,17689,17956,18225,18496,18769,19044,19321,19600,19881,20164,20449,20736,21025,21316,21609,21904,22201,22500,22801,23104,23409,23716,24025,24336,24649,24964,25281,25600,25921,26244,26569,26896,27225,27556,27889,28224,28561,28900,29241,29584,29929,30276,30625,30976,31329,31684,32041,32400,32761,33124,33489,33856,34225,34596,34969,35344,35721,36100,36481,36864,37249,37636,38025,38416,38809,39204,39601,40000,40401,40804,41209,41616,42025,42436,42849,43264,43681,44100,44521,44944,45369,45796,46225,46656,47089,47524,47961,48400,48841,49284,49729,50176,50625,51076,51529,51984,52441,52900,53361,53824,54289,54756,55225,55696,56169,56644,57121,57600,58081,58564,59049,59536,60025,60516,61009,61504,62001,62500,63001,63504,64009,64516,65025,65536,66049,66564,67081,67600,68121,68644,69169,69696,70225,70756,71289,71824,72361,72900,73441,73984,74529,75076,75625,76176,76729,77284,77841,78400,78961,79524,80089,80656,81225,81796,82369,82944,83521,84100,84681,85264,85849,86436,87025,87616,88209,88804,89401,90000,90601,91204,91809,92416,93025,93636,94249,94864,95481,96100,96721,97344,97969,98596,99225,99856};
long long b[100000][2]={0};
int main()
{
long long sum=0,fg,n,k;
scanf("%lld%lld",&n,&k);
for(int i=0;i<n;i++)
{
scanf("%lld%lld",&b[i][0],&b[i][1]);
sum+=b[i][0]*b[i][1];
}
for(long long i=315;i>=0;i--)//首先寻找在总面积上够分的边长
{
if(sum>=k*a[i])
{
fg=i+1;
break;
}
}
while(1){
sum=0;
for(int i=0;i<n;i++)//把n个巧克力挨个判断能分成多少个
{
sum+=(b[i][0]/fg)*(b[i][1]/fg);
}
if(sum>=k)//满足就输出并跳出循环
{
printf("%d\n",fg);
break;
}else{
fg=fg-1;
}
}
return 0;
}