题目:给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
动态规划
思路1:
回文字符串有一个特性:如果一个字符串是回文字符串ababa,那么去掉他的首位两个字符bab,还是一个回文字符串。反之,如果一个回文字符串bab,首尾加上两个相同的字符还是回文字符串ababa
可以写出动态规划的状态转移方程:
P
(
i
,
j
)
=
P
(
i
+
1
,
j
−
1
)
∧
(
S
i
=
=
S
j
)
P(i,j) = P(i+1,j-1)∧(S_i==S_j)
P(i,j)=P(i+1,j−1)∧(Si==Sj)
边界条件:对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。
代码
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
//特殊情况,一个字母
if(n < 2)
{
return s;
}
//初始化参数
int maxLen = 1;
int begin = 0;
// 1. 状态定义
// dp[i][j] 表示s[i...j] 是否是回文串
// 2. 画表格初始化,所有长度为 1 的子串都是回文串
boolean[][] dp = new boolean[n][n];
for(int i = 0; i < n; ++i)
{
dp[i][i] = true;// 对角线置为True(因为对角线只有一个字母)
}
char[] chars = s.toCharArray();
// 3. 状态转移
// 注意:先填左下角
// 填表规则:先一列一列的填写,再一行一行的填,保证左下方的单元格先进行计算
for(int j = 1; j < n; ++j)
{
for(int i = 0; i < j; ++i)
{
if(chars[i] != chars[j])// 头尾字符不相等,不是回文串
{
dp[i][j] = false;
}
else
{
// 相等的情况下
// 考虑头尾去掉以后没有字符剩余,或者剩下一个字符的时候,肯定是回文串
if(j - i < 3)
{
dp[i][j] = true;
}
else
{
dp[i][j] = dp[i+1][j-1];
}
}
// 此时更新记录回文长度和起始位置
if(dp[i][j] && j-i+1 > maxLen)
{
maxLen = j - i +1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}