1. 两数之和
思路:构造一个map来实现O(1)查找,key使用需要找到的另一半数字,value使用当前索引。遍历数组,如果map中包含nums[i],即又另一个数字与当前数字之和为target,则返回当前索引与另一个数字的索引。因为是从前往后查找,所以另一半一定是先遍历,索引较当前数字较小。如果map中不包含nums[i],则说明已经扫描的数字中没有当前数字的另一半,向map中存入当前数字所期望的另一半的值,与当前索引,继续向后搜索。如果遍历完成后,都没有符合条件的,则说明结果不存在。
代码:
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
if (map.containsKey(nums[i])) {
return new int[]{map.get(nums[i]), i};
} else {
map.put(target - nums[i], i);
}
}
return new int[]{};
}
时间复杂度:O(N)
空间复杂度:O(N)
2. 两数相加
思路:可以将链表化为整数相加后再转换为列表,但是会遇到溢出的情况。经典做法是按位相加,记录进位,直到两个链表都到尽头且进位为0时,则相加完成。使用链表时,记得保存头指针。
代码:
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
int sum = 0;
ListNode head = new ListNode(-1), ptr = head;
while (l1 != null || l2 != null) {
if (l1 != null) {
sum += l1.val;
l1 = l1.next;
}
if (l2 != null) {
sum += l2.val;
l2 = l2.next;
}
ptr.next = new ListNode(sum % 10);
ptr = ptr.next;
sum /= 10;
}
if (sum != 0) {
ptr.next = new ListNode(sum % 10);
}
return head.next;
}
时间复杂度:O(N)
空间复杂度:O(N)
3. 无重复最长子串
思路:因为字符的范围在ASCII码的取值范围内,使用一个长度为256的int数组记录每个字符上一次出现的位置,初始化为-1。遍历字符串,首先需要判断当前无重复最长子串开始的位置start。如果当前字符之前出现过且在当前start之后,则将start设置为当前字符最后一次出现的后一个位置,start不变。判断当前子串和历史最长子串的长度大小,取最大值。最后设置当前字符最后一次出现的位置为当前位置。遍历完成后,返回最长子串
代码:
public int lengthOfLongestSubstring(String s) {
int[] last = new int[256];
Arrays.fill(last, -1);
int start = 0, len = 0;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
start = start > last[c] + 1 ? start : last[c] + 1;
len = len > i - start + 1 ? len : i - start + 1;
last[c] = i;
}
return len;
}
时间复杂度:O(N)
空间复杂度:O(1)