统计-参数估计-假设检验-总结二


通往 统计-参数估计-假设检验-总结一

参数估计—区间估计

以某一范围提供对参数 θ \theta θ的估计。寻找统计量 θ 1 ∗ ( x 1 , x 2 , . . . , x n ) \theta_1^*(x_1,x_2,...,x_n) θ1(x1,x2,...,xn) θ 2 ∗ ( x 1 , x 2 , . . . , x n ) \theta_2^*(x_1,x_2,...,x_n) θ2(x1,x2,...,xn)满足 θ 1 ∗ < θ 2 ∗ \theta_1^*<\theta_2^* θ1<θ2;确定样本 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn之后,就将 θ \theta θ估计在区间 [ θ 1 ∗ ( x 1 , x 2 , . . . , x n ) , θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ] [\theta_1^*(x_1,x_2,...,x_n),\theta_2^*(x_1,x_2,...,x_n)] [θ1(x1,x2,...,xn),θ2(x1,x2,...,xn)]

满足上述要求的区间有很多,但具体估计的时候有优良性要求。

  • θ \theta θ应尽可能大的在区间 [ θ 1 ∗ ( x 1 , x 2 , . . . , x n ) , θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ] [\theta_1^*(x_1,x_2,...,x_n),\theta_2^*(x_1,x_2,...,x_n)] [θ1(x1,x2,...,xn),θ2(x1,x2,...,xn)]内,也即: p ( θ 1 ∗ ( x 1 , x 2 , . . . , x n ) ≤ θ ≤ θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ) p(\theta_1^*(x_1,x_2,...,x_n)\leq\theta\leq\theta_2^*(x_1,x_2,...,x_n)) p(θ1(x1,x2,...,xn)θθ2(x1,x2,...,xn))尽可能大
  • 估计精度要尽可能高,即: θ 2 ∗ ( x 1 , x 2 , . . . , x n ) − θ 1 ∗ ( x 1 , x 2 , . . . , x n ) \theta_2^*(x_1,x_2,...,x_n)-\theta_1^*(x_1,x_2,...,x_n) θ2(x1,x2,...,xn)θ1(x1,x2,...,xn)尽可能小。

实际上两者是冲突的,因此要引入置信区间的概念。
置信系数:给定一个很小的数 α > 0 \alpha>0 α>0若对 θ \theta θ的任意值均有 p ( θ 1 ∗ ( x 1 , x 2 , . . . , x n ) ≤ θ ≤ θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ) = 1 − α p(\theta_1^*(x_1,x_2,...,x_n)\leq\theta\leq\theta_2^*(x_1,x_2,...,x_n))=1-\alpha p(θ1(x1,x2,...,xn)θθ2(x1,x2,...,xn))=1α称区间估计 [ θ 1 ∗ , θ 2 ∗ ] [\theta_1^*,\theta_2^*] [θ1,θ2]的置信系数为 1 − α 1-\alpha 1α

置信水平:如果 p ( θ 1 ∗ ( x 1 , x 2 , . . . , x n ) ≤ θ ≤ θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ) = 1 − α p(\theta_1^*(x_1,x_2,...,x_n)\leq\theta\leq\theta_2^*(x_1,x_2,...,x_n))=1-\alpha p(θ1(x1,x2,...,xn)θθ2(x1,x2,...,xn))=1α,而 β < 1 − α \beta<1-\alpha β<1α;则 β \beta β均可称为 [ θ 1 ∗ , θ 2 ∗ ] [\theta_1^*,\theta_2^*] [θ1,θ2]的置信水平。

例如 1 − α = 0.95 1-\alpha=0.95 1α=0.95,说明 θ \theta θ落在区间 [ θ 1 ∗ , θ 2 ∗ ] [\theta_1^*,\theta_2^*] [θ1,θ2]的概率等于0.95,置信水平为95%,或者比95%小的数,比如90%,当置信水平达到了95%,自然也达到了90%,置信水平越高,估计的区间也越大,如果区间是正无穷至负无穷,那置信水平也达到了100%,但此时是没有意义的。

三大分布

在学习三大分布之前,需要知道 Γ \Gamma Γ函数(Gamma函数),区分Gamma函数和Gamma分布。
Gamma分布的背景来自于对泊松分布的推导。

例如一个站台的呼叫数,它只与时间间隔有关,而与时间(刻)本身无关,设 ξ ( t ) \xi(t) ξ(t) [ t 0 , t 0 + t ) [t_0,t_0+t) [t0,t0+t)内到达的呼叫数,则t时间间隔内到达k个呼叫数的概率 p ( ξ ( t ) = k ) = ( λ t ) k k ! e − λ t p(\xi(t)=k)=\frac{(\lambda t)^k}{k!}e^{-\lambda t} p(ξ(t)=k)=k!(λt)keλt,服从泊松分布。记 τ r \tau_r τr为第r个呼叫达到的时刻,根据泊松分布函数推导可以得到该自变量服从Gamma分布。
Gamma分布的密度函数:
g ( r , λ , t ) = λ r t r − 1 e − λ t Γ ( r ) g(r,\lambda,t)=\frac{\lambda^rt^{r-1}e^{-\lambda t}}{\Gamma(r)} g(r,λ,t)=Γ(r)λrtr1eλt

其中,r取整数时, Γ ( r ) = ( r − 1 ) ! \Gamma(r)=(r-1)! Γ(r)=(r1)!
Γ ( r ) = ∫ 0 ∞ t r − 1 e − t d t \Gamma(r)=\int_0^\infty t^{r-1}e^{-t}dt Γ(r)=0tr1etdt
为gamma函数( λ = 1 \lambda=1 λ=1, 对 t 进行了积分)

卡方分布(Gamma分布的特例)

自由度为n卡方分布: χ n 2 = Γ ( n 2 , 1 2 ) = ( 1 / 2 ) n / 2 y n / 2 e − 1 2 y π \chi_n^2=\Gamma(\frac{n}{2},\frac{1}{2})=\frac{(1/2)^{n/2}y^{n/2}e^{-\frac{1}{2}y}}{\sqrt{\pi}} χn2=Γ(2n,21)=π (1/2)n/2yn/2e21y

他的期望为n,方差为2n

Gamma分布的特例,其中 r = n 2 r=\frac{n}{2} r=2n λ = 1 2 \lambda=\frac{1}{2} λ=21

补充:若 ξ   N ( μ , σ 2 ) \xi ~ N(\mu, \sigma^2) ξ N(μ,σ2),则 η = ξ 2 \eta=\xi^2 η=ξ2服从自由度为1的卡方分布。

t分布

f ( x ; n ) = Γ ( ( n + 1 ) / 2 ) n π Γ ( n / 2 ) ( 1 + x 2 n ) − ( n + 1 ) / 2 f(x;n)=\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+\frac{x^2}{n})^{-(n+1)/2} f(x;n)= Γ(n/2)Γ((n+1)/2)(1+nx2)(n+1)/2

他的期望为0,方差为 n / ( n − 2 ) n/(n-2) n/(n2)

对应抽样分布:设总体服从正态分布, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为样本, X ˉ \bar X Xˉ记为样本均值, S S S记为方差,则:随机变量 n ( X ˉ − μ ) S \frac{\sqrt n(\bar X-\mu)}{S} Sn (Xˉμ)服从自由度为n的t分布

F分布

f ( x ; m , n ) = n n 2 n n 2 Γ ( n / 2 + m / 2 ) Γ ( n / 2 ) Γ ( n / 2 ) ( m + n t ) − m + n 2 t n / 2 − 1 f(x;m,n)=\frac{n^{\frac n2}n^{\frac n2}\Gamma{(n/2+m/2)}}{\Gamma{(n/2)}\Gamma{(n/2)}}(m+nt)^{-\frac{m+n}{2}}t^{n/2-1} f(x;m,n)=Γ(n/2)Γ(n/2)n2nn2nΓ(n/2+m/2)(m+nt)2m+ntn/21

他的期望为 n / ( m − 2 ) ( m > 2 ) n/(m-2) (m>2) n/(m2)(m>2) 方差为: 2 m 2 ( n + m − 2 ) n ( m − 2 ) 2 ( m − 4 ) \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)} n(m2)2(m4)2m2(n+m2)

对应抽样分布:两个总体X和Y,分别服从正态分布,所抽样本量分别为n和m。则随机变量 S X 2 S Y 2 / σ 1 2 σ 2 2 \frac{S_X^2}{S_Y^2}/\frac{\sigma_1^2}{\sigma_2^2} SY2SX2/σ22σ12服从自由度为n-1,m-1的F分布

求估计区间

求置信区间的方法:枢轴变量法

  1. 寻找一个与要估计参数 g ( θ ) g(\theta) g(θ)有关的统计量 T = T ( x 1 , x 2 , . . . , x n ) T=T(x_1,x_2,...,x_n) T=T(x1,x2,...,xn),一般是其优良点估计量。

  2. 设法寻找包含统计量 T T T以及待估参数 g ( θ ) g(\theta) g(θ)的随机变量 S ( T , g ( θ ) ) S(T,g(\theta)) S(T,g(θ))。要求 S ( T , g ( θ ) ) S(T,g(\theta)) S(T,g(θ))的分布与 θ \theta θ无关, S S S为枢轴变量。这个变量是服从某种已知分布的,如正态分布、t分布或者F分布等等
    在这里插入图片描述

  3. 对于给定的 1 − α 1-\alpha 1α,按照 p ( a ≤ S ( T , g ( θ ) ) ≤ b ) = 1 − α p(a\le S(T,g(\theta))\le b)=1-\alpha p(aS(T,g(θ))b)=1α,求出a和b,这里求a和b实际上就是看分布的上下分位数
    再由 a ≤ S ( T , g ( θ ) ) ≤ b a\le S(T,g(\theta))\le b aS(T,g(θ))b解出来 θ 1 ∗ ( T ) ≤ g ( θ ) ≤ θ 2 ∗ ( T ) \theta_1^*(T)\le g(\theta)\le \theta_2^*(T) θ1(T)g(θ)θ2(T)。则 [ θ 1 ∗ ( T ) , θ 2 ∗ ( T ) ] [\theta_1^*(T),\theta_2^*(T)] [θ1(T),θ2(T)]即为估计量的一个置信系数 1 − α 1-\alpha 1α的区间估计。

常见的枢轴变量:

  • 构造标准正态变量——某一变量服从正态分布(实际上自然界很多现象都服从正态分布),且其方差已知,对 μ \mu μ估计,他的优良估计连为 X ˉ \bar X Xˉ,可以构造随机变量 n ( X ˉ − μ ) σ \frac{\sqrt n(\bar X-\mu)}{\sigma} σn (Xˉμ),该变量服从标准正态分布,上下分位易求
  • t分布变量——还是上例,如果方差未知的情况呢? n ( X ˉ − μ ) σ \frac{\sqrt n(\bar X-\mu)}{\sigma} σn (Xˉμ)的分布无从可知,因为分母含有未知变量。此时构造变量 n ( X ˉ − μ ) S \frac{\sqrt n(\bar X-\mu)}{S} Sn (Xˉμ),S为样本标准差;那这个变量服从 t n − 1 t_{n-1} tn1分布,上下分位也易求得
  • 卡方分布变量——举个非正态分布的例子。对于指数总体参数 1 / λ 1/\lambda 1/λ的区间估计,以 2 n λ X ˉ 2n\lambda\bar X 2Xˉ作为枢轴变量。这个变量是服从 χ 2 n 2 \chi_{2n}^2 χ2n2的分布,也易求上下分位
  • ……

区间估计达到预先设定的置信系数要求,就需要把关注点转移到精度要求之上,无穷大的估计区间,再准也是没有意义的。

以正态分布方差已知,估计均值的例子为例:

p ( θ 1 ∗ ( x 1 , x 2 , . . . , x n ) ≤ θ ≤ θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ) = 1 − α p(\theta_1^*(x_1,x_2,...,x_n)\leq\theta\leq\theta_2^*(x_1,x_2,...,x_n))=1-\alpha p(θ1(x1,x2,...,xn)θθ2(x1,x2,...,xn))=1α

p ( θ 1 ∗ ( x 1 , x 2 , . . . , x n ) ≤ n ( X ˉ − μ ) σ ≤ θ 2 ∗ ( x 1 , x 2 , . . . , x n ) ) = 1 − α p(\theta_1^*(x_1,x_2,...,x_n)\leq\frac{\sqrt n(\bar X-\mu)}{\sigma}\leq\theta_2^*(x_1,x_2,...,x_n))=1-\alpha p(θ1(x1,x2,...,xn)σn (Xˉμ)θ2(x1,x2,...,xn))=1α

u 1 − α / 2 ≤ n ( X ˉ − μ ) σ ≤ u α / 2 u_{1-\alpha/2}\leq\frac{\sqrt n(\bar X-\mu)}{\sigma}\leq u_{\alpha/2} u1α/2σn (Xˉμ)uα/2

σ u 1 − α / 2 n − X ˉ ≤ − μ ≤ σ u α / 2 n − X ˉ \frac{\sigma u_{1-\alpha/2}}{\sqrt n}-\bar X\leq-\mu\leq \frac{\sigma u_{\alpha/2}}{\sqrt n}-\bar X n σu1α/2Xˉμn σuα/2Xˉ

X ˉ − σ u α / 2 n ≤ μ ≤ X ˉ − σ u 1 − α / 2 n \bar X-\frac{\sigma u_{\alpha/2}}{\sqrt n}\leq\mu\leq \bar X-\frac{\sigma u_{1-\alpha/2}}{\sqrt n} Xˉn σuα/2μXˉn σu1α/2

X ˉ − σ u α / 2 n ≤ μ ≤ X ˉ + σ u α / 2 n \bar X-\frac{\sigma u_{\alpha/2}}{\sqrt n}\leq\mu\leq \bar X+\frac{\sigma u_{\alpha/2}}{\sqrt n} Xˉn σuα/2μXˉ+n σuα/2
估计精度:
β = 2 σ u α / 2 n \beta=\frac{2\sigma u_{\alpha/2}}{\sqrt n} β=n 2σuα/2

如果要求估计精度达到 β \beta β, 那相应样本容量n就要增大,大于多少也易求。

假设检验

参数检验

例如,在元件寿命服从指数分布的假定下,要通过对抽出若干个元件进行测试所得到的数据去判定“元件平均寿命不小于5000小时”是否成立问题。

原假设: H 0 : 1 / λ ≥ 5000 H_0:1/\lambda\geq5000 H0:1/λ5000
对立假设: H 1 : 1 / λ < 5000 H_1:1/\lambda<5000 H1:1/λ<5000

任何一个假设的检验都需要用到样本,如上例中服从指数分布,用样本去判断这个假设,首先要表达出平均,也就是对这个指数分布的均值进行估计。在这个检验中,只要样本的均值满足: X ˉ ≥ C \bar X\ge C XˉC(C为一个适当的数),就可以接受原假设.

则,能让原假设被接受的样本符合:
A = { ( x 1 , x 2 , . . . , x n ) : x 1 + x 2 + . . . + x n ≥ n C } A=\{(x_1,x_2,...,x_n):x_1+x_2+...+x_n\ge nC\} A={(x1,x2,...,xn):x1+x2+...+xnnC}
这是一个样本集,也称 接受域
同样,A的互补集为 拒绝域

给定的常数C是临界值,但无论给出什么临界值,都避免不了犯错误。(1)在原假设为真情况下,样本落在了拒绝域内,拒绝了原假设,出现第一类错误:弃真错误。(2)原假设非真,但样本落在了接受域内,从而接受原假设,出现第二类错误:取伪错误。由于样本的随机性,错误总是不可避免,只能尽可能降低犯错概率。

对于上例中,原假设被否定概率用 β ϕ ( λ ) \beta_\phi(\lambda) βϕ(λ)表示:
β ϕ ( λ ) = P λ ( X ˉ < C ) \beta_\phi(\lambda)=P_\lambda(\bar X<C) βϕ(λ)=Pλ(Xˉ<C)

表示的是样本落在拒绝域内的概率。

上例中,由于 2 n λ X ˉ 2n\lambda\bar X 2Xˉ~ χ 2 n 2 \chi_{2n}^2 χ2n2,则有:
β ϕ ( λ ) = P λ ( X ˉ < C ) = K 2 n ( 2 n λ C ) \beta_\phi(\lambda)=P_\lambda(\bar X<C)=K_{2n}(2n\lambda C) βϕ(λ)=Pλ(Xˉ<C)=K2n(2C)

可见,这个概率(样本落在拒绝域,也即均值小于5000小时)随 λ \lambda λ增大而增加, λ \lambda λ越大, 1 / λ 1/\lambda 1/λ越小,越小于5000小时,样本落在小于5000小时的概率就越大。作为一个合理的假设, λ \lambda λ越大,就应该用更大的概率否定原假设。

功效函数 是假设检验的重要概念:

β ϕ ( θ 1 , θ 2 , . . . , θ k ) = P θ 1 , θ 2 , . . . , θ k ( d e n y − H 0 ) \beta_\phi(\theta_1,\theta_2,...,\theta_k)=P_{\theta_1,\theta_2,...,\theta_k}(deny-H_0) βϕ(θ1,θ2,...,θk)=Pθ1,θ2,...,θk(denyH0)
功效函数是未知参数的函数。当 θ 1 , θ 2 , . . . , θ k \theta_1,\theta_2,...,\theta_k θ1,θ2,...,θk属于对立假设时,我们希望 β ϕ ( θ 1 , θ 2 , . . . , θ k ) \beta_\phi(\theta_1,\theta_2,...,\theta_k) βϕ(θ1,θ2,...,θk)尽可能大(拒绝原假设的概率尽可能大)

发生两类错误的概率:
(1)原假设正确但被否了。用 α 1 ϕ ( θ 1 , θ 2 , . . . , θ k ) \alpha_{1\phi}(\theta_1,\theta_2,...,\theta_k) α1ϕ(θ1,θ2,...,θk)表示。
如果 θ 1 , θ 2 , . . . , θ k ∈ H 0 \theta_1,\theta_2,...,\theta_k\in H_0 θ1,θ2,...,θkH0
α 1 ϕ ( θ 1 , θ 2 , . . . , θ k ) = β ϕ ( θ 1 , θ 2 , . . . , θ k ) \alpha_{1\phi}(\theta_1,\theta_2,...,\theta_k)=\beta_\phi(\theta_1,\theta_2,...,\theta_k) α1ϕ(θ1,θ2,...,θk)=βϕ(θ1,θ2,...,θk)
如果 θ 1 , θ 2 , . . . , θ k ∉ H 0 \theta_1,\theta_2,...,\theta_k\notin H_0 θ1,θ2,...,θk/H0
α 1 ϕ ( θ 1 , θ 2 , . . . , θ k ) = 0 \alpha_{1\phi}(\theta_1,\theta_2,...,\theta_k)=0 α1ϕ(θ1,θ2,...,θk)=0

(2)原假设错误,但被接受。用 α 2 ϕ ( θ 1 , θ 2 , . . . , θ k ) \alpha_{2\phi}(\theta_1,\theta_2,...,\theta_k) α2ϕ(θ1,θ2,...,θk)表示。
如果 θ 1 , θ 2 , . . . , θ k ∈ H 0 \theta_1,\theta_2,...,\theta_k\in H_0 θ1,θ2,...,θkH0
α 2 ϕ ( θ 1 , θ 2 , . . . , θ k ) = 0 \alpha_{2\phi}(\theta_1,\theta_2,...,\theta_k)=0 α2ϕ(θ1,θ2,...,θk)=0
如果 θ 1 , θ 2 , . . . , θ k ∉ H 0 \theta_1,\theta_2,...,\theta_k\notin H_0 θ1,θ2,...,θk/H0

α 2 ϕ ( θ 1 , θ 2 , . . . , θ k ) = 1 − β ϕ ( θ 1 , θ 2 , . . . , θ k ) \alpha_{2\phi}(\theta_1,\theta_2,...,\theta_k)=1-\beta_\phi(\theta_1,\theta_2,...,\theta_k) α2ϕ(θ1,θ2,...,θk)=1βϕ(θ1,θ2,...,θk)
检验水平 :一个常数 α \alpha α 0 ≤ α ≤ 1 0\le\alpha\le1 0α1),对任何的 θ 1 , θ 2 , . . . , θ k ∈ H 0 \theta_1,\theta_2,...,\theta_k\in H_0 θ1,θ2,...,θkH0,都有 β ϕ ( θ 1 , θ 2 , . . . , θ k ) ≤ α \beta_\phi(\theta_1,\theta_2,...,\theta_k)\le\alpha βϕ(θ1,θ2,...,θk)α,称该检验为原假设在水平 α \alpha α的检验。

原假设认为 θ 1 , θ 2 , . . . , θ k ∈ H 0 \theta_1,\theta_2,...,\theta_k\in H_0 θ1,θ2,...,θkH0,如果对任意的参数取值 θ 1 , θ 2 , . . . , θ k ∈ H 0 \theta_1,\theta_2,...,\theta_k\in H_0 θ1,θ2,...,θkH0,都能保证犯错误的概率小于某个数 α \alpha α,那我们接受它的意愿就更有说服力了, α \alpha α取得小,犯第一类错误的概率很小。也即原假设正确下,所有可能的样本组合,能拒绝原假设的概率很小。反过来看,如果样本的所有可能组合,拒绝原假设的概率很小,设定某一水平,如果概率小于这个水平,是可以认为原假设正确的。

重要的假设检验:
(1)正态均值检验
x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为正态总体抽取的样本,讨论 θ \theta θ的假设检验问题:
H 0 : θ ≥ θ 0 ; H 1 : θ < θ 0 H_0:\theta\ge\theta_0;H_1:\theta<\theta_0 H0:θθ0;H1:θ<θ0
σ 2 \sigma^2 σ2已知时
选择 X ˉ \bar X Xˉ作为参数 θ \theta θ的估计量,设定检验 ϕ \phi ϕ:当 X ˉ ≥ C \bar X\ge C XˉC时,接受原假设,当 X ˉ < C \bar X< C Xˉ<C时,否定原假设。
要给定常数C使之具有水平 α \alpha α,按照功效函数定义,在此检验下拒绝原假设的概率为:

β ϕ ( θ ) = P θ ( X ˉ < C ) = P θ ( n ( X ˉ − θ ) σ < n ( C − θ ) σ ) = ϕ ( n ( C − θ ) σ ) = α \beta_\phi(\theta)=P_{\theta}(\bar X<C)=P_{\theta}(\frac{\sqrt n(\bar X-\theta)}{\sigma}<\frac{\sqrt n(C-\theta)}{\sigma})=\phi(\frac{\sqrt n(C-\theta)}{\sigma})=\alpha βϕ(θ)=Pθ(Xˉ<C)=Pθ(σn (Xˉθ)<σn (Cθ))=ϕ(σn (Cθ))=α
如果要检验水平为 α \alpha α,即要 β ϕ ( θ ) ≤ α \beta_\phi(\theta)\le\alpha βϕ(θ)α
仅需取: n ( C − θ ) σ = u 1 − α = − u α \frac{\sqrt n(C-\theta)}{\sigma}=u_{1-\alpha}=-u_\alpha σn (Cθ)=u1α=uα
可得: C = θ 0 − σ u α / n C=\theta_0-\sigma u_\alpha/\sqrt n C=θ0σuα/n

将C带入功效函数:
β ϕ ( θ ) = ϕ ( n ( θ 0 − θ ) σ − u α ) \beta_\phi(\theta)=\phi(\frac{\sqrt n(\theta_0-\theta)}{\sigma}-u_\alpha) βϕ(θ)=ϕ(σn (θ0θ)uα)

从上式知, β ϕ \beta_\phi βϕ与参数 θ \theta θ、水平 α \alpha α以及标准差 θ \theta θ均有关:

拟合优度检验

理论分布已知,对分布检验
对分布的假设:
H 0 H_0 H0 p ( X = a i ) = p i p(X=a_i)=p_i p(X=ai)=pi, i=1,2,…,k

从总体中抽出容量n的样本或进行n次观察,得到样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,根据样本检验 H 0 H_0 H0 n p i np_i npi a i a_i ai的理论样本数量,统计 a i a_i ai出现的次数为 v i v_i vi(实际统计的样本数量),为观察值。

显然,差异越小越乐于接受它。
皮尔逊的拟合优度 χ 2 \chi^2 χ2统计量:

Z = ∑ n p i − v i n p i Z=\sum\frac{np_i-v_i}{np_i} Z=npinpivi

假设成立,在样本量很大时, Z Z Z服从自由度 k − 1 k-1 k1 χ 2 \chi^2 χ2的分布。

拟合优度 对这个检验,计算得到一定水平下的临界值为 Z 0 Z_0 Z0,显然当统计量Z满足 Z > Z 0 Z>Z_0 Z>Z0时否定原假设。在原假设为真时, P ( Z > Z 0 ) P(Z>Z_0) P(Z>Z0)的概率就是犯错误的概率。定义拟合优度:
P ( Z 0 ) = P ( Z > Z 0 ∣ H 0 ) = 1 − K k − 1 ( Z 0 ) P(Z_0)=P(Z>Z_0|H_0)=1-K_{k-1}(Z_0) P(Z0)=P(Z>Z0H0)=1Kk1(Z0)
拟合优度越大, Z 0 Z_0 Z0越小,犯错误的概率越低,表示理论与实际符合的越好。

一家工厂早中晚三班,每班8小时,发生一些事故,早班6次,中班3次,晚班6次,怀疑事故发生与班次有关。
H 0 H_0 H0(事故与班次无关) p i = 1 / 3 p_i=1/3 pi=1/3,i =1,2,3

试验15次,可计算拟合优度统计量:
Z 0 = ( ( 5 − 6 ) 2 + ( 3 − 6 ) 2 + ( 5 − 6 ) 2 ) / 5 = 1.2 Z_0=((5-6)^2+(3-6)^2+(5-6)^2)/5=1.2 Z0=((56)2+(36)2+(56)2)/5=1.2
χ 2 ( 1.2 ) = 0.451 \chi_{2}(1.2)=0.451 χ2(1.2)=0.451,拟合优度 p ( Z 0 ) = 0.549 p(Z_0)=0.549 p(Z0)=0.549
在一定准则下考虑是否拒绝原假设。

理论分布未知

总体X只取有限个值,其概率: p ( X = a i ) = p i ( θ 1 , θ 2 , . . . , θ r ) p(X=a_i)=p_i(\theta_1,\theta_2,...,\theta_r) p(X=ai)=pi(θ1,θ2,...,θr),其中, θ 1 , θ 2 , . . . , θ r \theta_1,\theta_2,...,\theta_r θ1,θ2,...,θr为未知参数。
设对X进行n次观察,以 v i v_i vi记为X出现的次数。
假设: H 0 : p ( X = a i ) = p i ( θ 1 , θ 2 , . . . , θ r ) H_0: p(X=a_i)=p_i(\theta_1,\theta_2,...,\theta_r) H0:p(X=ai)=pi(θ1,θ2,...,θr),对参数 θ 1 , θ 2 , . . . , θ r \theta_1,\theta_2,...,\theta_r θ1,θ2,...,θr的某一组值 θ 1 0 , θ 2 0 , . . . , θ r 0 \theta_1^0,\theta_2^0,...,\theta_r^0 θ10,θ20,...,θr0成立。

  1. 首先,要确定参数 θ 1 , θ 2 , . . . , θ r \theta_1,\theta_2,...,\theta_r θ1,θ2,...,θr,确定参数后才能进行拟合优度的检验。这一步为参数估计部分,利用样本数据对参数进行估计:采用极大似然法。(离散分布极大似然估计公式) L = n ! v 1 ! ⋅ v 2 ! . . . ⋅ v k ! P 1 v 1 ⋅ P 2 v 2 ⋅ . . . ⋅ P k v k L=\frac{n!}{v_1!\cdot v_2!... \cdot v_k!}P_1^{v_1}\cdot P_2^{v_2}\cdot...\cdot P_k^{v_k} L=v1!v2!...vk!n!P1v1P2v2...Pkvk 解方程求取极大似然估计值
  2. 以估计值为参数真值,计算理论概率。在一定条件下,若原假设成立,当样本很大时, Z Z Z统计量分布趋向于 χ k − 1 − r 2 \chi_{k-1-r}^2 χk1r2.
  3. 若以 Z 0 Z_0 Z0记为算出来的具体统计量,算出 Z 0 Z_0 Z0的拟合优度 Z 0 > χ k − 1 − r 2 ( α ) Z_0>\chi_{k-1-r}^2(\alpha) Z0>χk1r2(α)时,否定原假设

列联表检验统计量

u i u_i ui=p(属性A在水平i); v j v_j vj=p(属性B在水平j); p i j p_{ij} pij=p(属性A在水平i且 属性B在水平j)。假设: H 0 H_0 H0 p i j = u i v j p_{ij}=u_iv_j pij=uivj, i=1,2,…a; j = 1,2,…,b.
根据极大似然法,求得 u ^ i = n i ⋅ n \hat u_i=\frac{n_{i\cdot}}{n} u^i=nni; v ^ j = n j ⋅ n \hat v_j=\frac{n_{j\cdot}}{n} v^j=nnj
由此可得 p ^ i j = n i ⋅ n j ⋅ n 2 \hat p_{ij}=\frac{n_{i\cdot}n_{j\cdot}}{n^2} p^ij=n2ninj

第(i,j)得理论值: n p i j = n i ⋅ n j ⋅ n np_{ij}=\frac{n_{i\cdot}n_{j\cdot}}{n} npij=nninj

统计量 Z = ∑ i a ∑ 1 b ( n ⋅ n i j − n i ⋅ n j ⋅ ) 2 n ⋅ n i ⋅ n j ⋅ Z=\sum_i^a\sum_1^b\frac{(n\cdot n_{ij}-n_{i\cdot}n_{j\cdot})^2}{n\cdot n_{i\cdot}n_{j\cdot}} Z=ia1bnninj(nnijninj)2

例文化水平与支出
纵轴A,123表示教育水平高中低;横轴B,12表示支出水平高低。

123sum
1633760160
21617841
sum795468201

计算统计量 Z 0 Z_0 Z0为7.2078,拟合优度p=0.0207,过低,拒绝原假设:收入与文化消费无关。收入高者,文化指出偏低。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1. 描述性统计分析关键指标计算方法: 描述性统计分析是指通过一些关键指标对数据进行总结和描述,常用的关键指标包括:平均数、中位数、众数、标准差、方差、最大值、最小值、分位数等。计算方法如下: - 平均数:所有数据的总和除以数据的个数。 - 中位数:将数据按大小排序,取中间位置的数,如果数据个数为偶数,则取中间两个数的平均数。 - 众数:出现最频繁的数。 - 标准差:平均数和每个数据的差的平方和除以数据的个数,再开根号。 - 方差:平均数和每个数据的差的平方和除以数据的个数。 - 最大值:数据中的最大值。 - 最小值:数据中的最小值。 - 分位数:将数据按大小排序,将数据分成若干等份,每份包含相同数量的数据,对应的数即为分位数。 2. 常见统计图表的表示方法及用途: 常见的统计图表包括直方图、饼图、折线图、散点图、箱线图等。它们的用途如下: - 直方图:用于展示数据的分布情况,横轴表示数据的范围,纵轴表示数据出现的频率。 - 饼图:用于展示不同类别数据的比例关系,每个扇形表示一个类别,扇形的面积表示该类别占总体的比例。 - 折线图:用于展示数据随时间或其他变量的变化趋势,横轴表示时间或其他变量,纵轴表示数据的取值。 - 散点图:用于展示两个变量之间的关系,横轴表示第一个变量,纵轴表示第个变量,每个点表示两个变量的取值。 - 箱线图:用于展示一组数据的分布情况,箱体表示数据的四分位数范围,箱线表示中位数,须表示数据的整体范围。 3. 置信区间的含义以及常见的参数估计方法: 置信区间是指对于一个未知参数的估计值,以一定的置信水平给出的一个区间范围,该区间范围包含了真实参数值的概率由置信水平决定。例如,以95%的置信水平给出的置信区间,意味着在样本数量不变的情况下,有95%的概率真实参数值在该区间范围内。 常见的参数估计方法包括: - 点估计:直接用样本数据计算出未知参数的估计值。 - 区间估计:给出未知参数的估计区间,包括点估计和置信区间。 - 极大似然估计:在已知样本数据的情况下,寻找最大化似然函数的未知参数值作为估计值。 - 贝叶斯估计:在已知样本数据的情况下,基于先验分布和似然函数,计算后验分布来估计未知参数。 4. 假设检验的原理;常见的几种假设检验的方法: 假设检验是指在已知样本数据的前提下,对总体或总体参数的某个假设进行检验。假设检验的原理包括: - 提出假设:设定原假设和备择假设。 - 确定显著性水平:通常取0.05或0.01。 - 计算检验统计量:根据样本数据计算出检验统计量的值。 - 判断拒绝还是接受原假设:将检验统计量的值与临界值进行比较,如果检验统计量的值在拒绝域内,则拒绝原假设,否则接受原假设。 常见的假设检验方法包括: - 单样本t检验:用于检验一个样本的均值是否等于某个给定值。 - 双样本t检验:用于检验两个样本均值是否相等。 - 方差分析:用于检验多个样本均值是否存在显著差异。 - 卡方检验:用于检验两个或两个以上分类变量之间是否有关联。 - 相关分析:用于检验两个变量之间是否存在线性关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cshgiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值