- 博客(6)
- 收藏
- 关注
转载 变分推断学习笔记(2)——一维高斯模型的例子
变分推断学习笔记(2)——一维高斯模型的例子 变分推断学习笔记系列: 变分推断学习笔记(1)——概念介绍变分推断学习笔记(2)——一维高斯模型的例子变分推断学习笔记(3)——三硬币问题的变分推断解法 举一个一元高斯模型的例子。假设我们有数据X={x1,…,xM}X={x1,…,xM},要推断平均值μμ和精度τ(1/σ)τ(1/σ)的后验概率分布。 写出似然 p(X|μ,
2017-12-03 21:32:39 811
转载 变分推断
变分推断 原创 2016年09月13日 14:30:44 标签: 427 编辑 删除 在机器学习中经常会遇到某个分布的期望的情况,简单的情况还好,但是一旦遇到难以计算或者估计的复杂分布,那么问题将变得难以处理。变分推断在机器学习上就是用来解决找到某种简单形式的分布来近似估计某个复杂分布的问题。 假设模型中存在x为样本变量
2017-12-03 21:24:33 254
转载 机器学习(2) 变分推断
机器学习(2) 变分推断 原创 2017年03月26日 10:55:45 标签: 数学 / 554 编辑 删除 变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x)。那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F(f(x)) 。对于f(x)
2017-12-03 21:20:59 334
转载 变分贝叶斯推断(Variational Bayes Inference)简介
变分贝叶斯推断(Variational Bayes Inference)简介 原创 2017年02月25日 16:42:02 标签: 4279 编辑 删除 通常在研究贝叶斯模型中,很多情况下我们关注的是如何求解后验概率(Posterior),不幸的是,在实际模型中我们很难通过简单的贝叶斯理论求得后验概率的公式解,但是这并不影响我们对贝叶斯模型的爱——
2017-12-03 21:17:07 1958
转载 变分推断(variational inference)
变分推断(variational inference) 原创 2017年02月12日 12:13:49 标签: 2796 编辑 删除 variational inference 大家对贝叶斯公式应该都很熟悉 P(Z|X)=p(X,Z)∫zp(X,Z=z)dz 我们称P(Z|X)为posterior distribution。pos
2017-12-03 21:12:03 1002 1
转载 PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )
PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field ) 原创 2015年02月03日 15:51:38 标签: 近似推断 / 变分推断 / KL散度 / 平均场 / Mean Field / 7181 编辑 删除 主讲人 戴玮 (新浪微博:@戴玮_CASIA)
2017-12-03 21:10:10 965
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人