饱和和非饱和激活函数

右饱和:
当x趋向于正无穷时,函数的导数趋近于0,此时称为右饱和。
左饱和:
当x趋向于负无穷时,函数的导数趋近于0,此时称为左饱和。
饱和函数和非饱和函数:
当一个函数既满足右饱和,又满足左饱和,则称为饱和函数,否则称为非饱和函数。
常用的饱和激活函数和非饱和激活函数:
饱和激活函数有如Sigmoid和tanh,非饱和激活函数有ReLU;相较于饱和激活函数,非饱和激活函数可以解决“梯度消失”的问题,加快收敛。
下面我们进行分析:
Sgimoid函数:
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac{1}{1+e^{-x}} sigmoid(x)=1+ex1,其导数为 s i g m o i d ( x ) = e − x ( 1 + e − x ) 2 sigmoid(x)=\frac{e^{-x}}{(1+e^{-x})^2} sigmoid(x)=(1+ex)2ex,图像如下:
在这里插入图片描述
可以看出sigmoid的导数最大值为0.25,在进行反向传播时,各层的梯度(均小于0.25)相乘很容易造成梯度为0,也就是“梯度消失”。
tanh函数:
t a n h ( x ) = e x − e − x e x + e − x tanh(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} tanh(x)=ex+exexex,其导数为 4 e 2 x ( e 2 x + 1 ) 2 \frac{4e^{2x}}{(e^{2x}+1)^2} (e2x+1)24e2x,图像如下:
在这里插入图片描述
可以看出,相较于Sigmoid函数有所改善,但导数仍小于1,不能避免梯度消失的情况。
ReLU函数:
该函数与其导函数的图像如下
在这里插入图片描述
在这里插入图片描述
可以看出ReLu的导函数在正数部分为1,不会造成梯度消失和梯度爆炸。但反向传播时一旦学习率没有设置好,使得某个神经元的ReLu 输入为负数,则会导致该神经元不再更新,这就是神经元死亡的现象,ReLu有一些变体对该问题进行了处理。

本文参照:https://blog.csdn.net/qq_42422981/article/details/89561955,该文中对sigmoig、tanh、ReLu及其变种进行了讲解,大家可以参考一下。

  • 30
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值