算法-归并排序(Java)

在这里插入图片描述
最近在看左神的算法课,理解之后在此将代码记录下来

    /**
     * 归并排序
     * @param arr 待排的数组
     */
    private static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        sortProcess(arr, 0, arr.length - 1);
    }

    /**
     * 排序过程
     * @param arr 待排子数组
     * @param l 子数组开始位置
     * @param r 子数组结束位置
     */
    private static void sortProcess(int[] arr, int l, int r) {
        if (l == r) {//待排数组只有一个数时
            return;
        }
        int mid = l + ((r - l) >> 1);//数组索引中间值//int mid = (l + r) / 2的形式不安全
        sortProcess(arr, l, mid);//排mid左边的值
        sortProcess(arr, mid + 1, r);//排mid右边的值
        merge(arr, l, mid, r);//左右两边都排好之后进行左右两边排序
    }

    /**
     * 合并
     * @param arr 原数组
     * @param l 原数组左边部分起始值
     * @param mid 原数组中间索引号
     * @param r 原数组右边部分结束值
     */
    private static void merge(int[] arr, int l, int mid, int r) {
        int[] help = new int[r - l + 1];//辅助数组
        int i = 0;//辅助数组的下标
        int p1 = l;//左边数组的索引
        int p2 = mid + 1;//右边数组的索引
        while (p1 <= mid && p2 <= r) {//mid左边部分和右边部分均没有越界
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        //右边先排完,左边直接覆盖原数组
        while (p1 <= mid) {
            help[i++] = arr[p1++];
        }
        //左边先排完,右边直接覆盖原数组
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        //数组拷贝
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
    }

例子1:
在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和。求一个数组 的小和。
例子:
[1,3,4,2,5] 1左边比1小的数,没有;
3左边比3小的数,1;
4左边比4小的数,1、3;
2左边比2小的数,1;
5左边比5小的数,1、3、4、2;
所以小和为1+1+3+1+1+3+4+2=16

    /**
     * 归并排序
     * @param arr 待排的数组
     * @return 小和
     */
    private static int mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return 0;
        }
        return sortProcess(arr, 0, arr.length - 1);
    }

    /**
     * 排序过程
     * @param arr 待排子数组
     * @param l 子数组开始位置
     * @param r 子数组结束位置
     * @return 子项小和
     */
    private static int sortProcess(int[] arr, int l, int r) {
        if (l == r) {
            return 0;
        }
        int mid = l + ((r - l) / 2);
        return sortProcess(arr, l, mid)
                + sortProcess(arr, mid + 1, r)
                + merge(arr, l, mid, r);
    }

    /**
     * 合并
     * @param arr 原数组
     * @param l 原数组左边部分起始值
     * @param mid 原数组中间索引号
     * @param r 原数组右边部分结束值
     * @return 子项小和
     */
    private static int merge(int[] arr, int l, int mid, int r) {
        int[] help = new int[r - l + 1];//辅助数组
        int i = 0;
        int p1 = l;
        int p2 = mid + 1;
        int result = 0;
        while (p1 <= mid && p2 <= r) {
            result += arr[p1] < arr[p2] ? arr[p1] * (r - p2 + 1) : 0;
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= mid) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
        return result;
    }
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值