
论文阅读:scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell
受数据样本量小、人工干预多、过度依赖 marker gene(已报道的特异性基因)等因素的影响,单细胞测序细胞类型注释技术一直面临着泛化性、可解释性、稳定性均比较低的问题,现存的算法难以有更广泛的应用。随机选择来自Zheng68K数据集的10%、30%、50%、70%和90%的PBMC细胞作为用于微调的参考,而剩余的作为用于测试的查询样本。预测结果,真实分类对比,用人肝组织评估未知细胞类型鉴定,MacParland数据集,4种类型,每次从中取出一种类型进行,用于验证,其他用于训练。






