mybatis批量更新及其效率问题

最近,负责公司一些旧数据的批量整理和清洗工作,在网上寻找了两种mybatis批量更新的方法。现在在这里总结下和说明下遇到的问题。

一:背景

公司旧数据的清洗,比如图片路径的改变,日期格式的改变(日期格式是varchar),因为数据大体上有一定的规律可寻,所以我的解决思路是用mybatis操作数据库,把需要清洗的数据查询出来并按一定规律进行清洗,在批量更新进数据库中。在这里尝试了两种方式的批量更新。

注意:

public void updateData(List<Map<String, Object>> map);

1.这条批量更新的传入参数是一个List<Map<String, Object>> map。

url: jdbc:mysql://localhost:3306/task?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC&allowMultiQueries=true

2.jdbc与mysql的连接的url中要添加allowMultiQueries=true参数。本人因为刚开始没有加这个参数,导致一直报错。

### Error updating database.  Cause: com.mysql.cj.jdbc.exceptions.PacketTooBigException: Packet for query is too large (12,981,868 > 4,194,304)

这是因为mysql数据库限制了处理文件的大小,默认是4MB,修改即可。
修改方法:

第一种:

在mysql的配置文件my.ini中添加 max_allowed_packet =67108864 ,我这里设置的是64MB,各位可以按照需要自行设置,这种方法是修改配置文件,所以就算数据库重启也会生效。

第二种:
set global max_allowed_packet = 64*1024*1024; 

执行此sql语句可以把文件处理的最大值设置为64MB,需要多少自行决定,这种方式修改,数据库重启之后会重置为默认值。

show VARIABLES like '%max_allowed_packet%';

这个sql语句是查询文件处理的最大值是多少。

二:批量更新的方式总结:

第一种:

    <update id="updata1">
		<foreach collection="list" item="item" separator=";">
			update refund_assistant_stqd set images=#{item.images} where id=#{item.id}
		</foreach>
	</update>

这种方法会生成这样的语句:

update refund_assistant_stqd set images=#{item.images} where id=#{item.id};
update refund_assistant_stqd set images=#{item.images} where id=#{item.id};
......

这样与在java代码里面循环做一个循环没有啥本质上区别,根本就不是批量操作。也使用过了。效率极其之低,并且对数据库的负载相当之大,运行期间磁盘IO达到了百分之百,这种方法是不可取的,望后面的人能警醒。

第二种:

<update id="updateData">
		  update refund_assistant_stqd
        <trim prefix="set" suffixOverrides=",">
            <trim prefix="images =case" suffix="end,">
                <foreach collection="list" item="item" index="index">
                     when id=#{item.id} then #{item.images}
                </foreach>
            </trim>
        </trim>
        where id in
        <foreach collection="list" index="index" item="item" separator="," open="(" close=")">
            #{item.id}
        </foreach>
	</update>

这种方法会生成这样的语句:

update refund_assistant_stqd set 
images= (case when id=##{item.id} then #{item.images}),
images= (case when id=##{item.id} then #{item.images}),
.....
where id in (#{item.id},#{item.id},...)

这种方法采用了case when 机制,使得相应的id与images能相匹配,只生成了一条sql语句,所以对数据库的压力会大大的缩小,时间都会花费在sql字符串的拼接上,并且sql的拼接是在你的电脑上完成的,不会对远程数据库的服务器产生不必要的负载。效率提高了很多。本人更新了12万条数据用了367秒,上面的第一种方法运行了20分钟之后我就放弃了,所以并没有测试出时间。

三:总结:

解决完以上背景里面的注意事项之后,本人的任务就执行完成了。
在这里要说一下,mybatis的批量操作原理就是使用sql 字符串的拼接技术,了解其原理之后对mybatis的批量操作处理有了一个大概轮廓了,不再神秘,所以,我们学习技术不仅仅要知其然,更要知其所以然。
这是小编正式写博客的第一篇,小编刚毕业工作半年,以后会在博客上总结一些工作上的细节,和技术学习上的总结。希望多多支持,多多交流。一起进步。

MyBatis Flex是一种基于 MyBatis 的框架拓展,它提供了更高级别的抽象和方便的数据操作功能,特别是对于批量处理操作的支持。在 MyBatis Flex 中,你可以更容易地执行批量插入、更新和删除等操作。 ### 批量更新的实现 在 MyBatis Flex 中批量更新的操作通常涉及到两个步骤: 1. **创建SQL脚本**:首先,你需要编写 SQL 脚本来描述你要批量更新的操作。例如,如果你想更新多行数据,并希望基于某个条件更新所有列,你可能会有一条类似于这样的 SQL 查询: ```sql UPDATE table_name SET column1 = value1, column2 = value2, ... WHERE condition; ``` 2. **使用框架API**:然后利用 MyBatis Flex 的 API 来执行这个 SQL 查询并传递参数。通常,你会有一个 `BatchExecutor` 对象,它可以接收一组 SQL 语句和对应的参数列表,然后一次性执行它们。这使得数据库操作效率大大提高,因为减少了网络延迟和多次查询对性能的影响。 下面是一个简单的例子说明如何在 MyBatis Flex 中执行批量更新操作: ```java import com.ibatis.flex.SqlSession; import com.ibatis.flex.BatchExecutor; public class BatchUpdateExample { public static void main(String[] args) throws Exception { SqlSession session = // 获取SqlSession实例的方法略 try { // 创建BatchExecutor实例 BatchExecutor batchExecutor = new BatchExecutor(session); // 准备SQL语句(这里假设我们有两行需要更新) String updateSql = "UPDATE table_name SET column1 = ?, column2 = ? WHERE id = ?"; // 准备每行数据需要的参数数组 Object[][] paramsArray = { {new Integer(1), "newValue1"}, {new Integer(2), "newValue2"} }; // 执行批量更新操作 int resultCount = batchExecutor.execute(updateSql, paramsArray); System.out.println("成功更新了 " + resultCount + " 行"); } finally { session.close(); } } } ``` 在这个例子中,`updateSql` 包含了你需要执行的 SQL 更新命令,而 `paramsArray` 则包含了每一行数据的参数值。通过这种方式,你可以一次提交多个 SQL 更新语句及其参数到数据库服务器上执行。 ### 相关问题: 1. **批量更新是否比逐行更新更快?** 批量更新通常比逐行更新更快,因为它可以减少数据库服务器和客户端之间的通信次数,提高执行效率。 2. **如何优化批量更新操作的性能?** - 确保你的 SQL 查询语句高效,避免不必要的索引扫描。 - 使用批处理时,确保提供的数据集大小合适,避免过大导致内存溢出或过小导致效率降低的情况。 - 如果可能,尽量减少在执行批量更新前后的预加载和清理工作,以减少额外的时间开销。 3. **批量更新在哪些场景下特别有用?** - 当你有大量的数据需要更新,而且这些更新满足相同的条件时,批量更新能够显著提升更新速度。 - 在执行大规模数据迁移或同步任务时,批量更新可以帮助快速完成数据状态的一致性调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值