n!的末尾0的个数

题目描述:

输入一个正整数n,求n!(即阶乘)末尾有多少个0? 比如: n = 10; n! = 3628800,所以答案为2 。

解题思路:

对于这样的问题,我们可以换个思维方式,它要求0的个数,那么0是怎么来的?
是不是一对2*5得到的0,所以我们可以分解这个问题分,把他看作是求整数n分解质因数后,一共有多少组min(2,5),在当然2的个数肯定比5多,所以我们继续往下拆解,可以看做是求n中有多少个5!!!

在n这个数中,每隔5个就会分解产生一个0,如:5,10,15,20….
每隔5*5个就会多分解产生一个5,如:25,50,75…..
再阁5*5*5就又多一个5…

废话少说上代码
#include <stdio.h>

int CountZero(int n)
{
    int count = 0;
    while(n)
    {
        count = count+n/5;
        n /= 5;
    }
    return count;
}

int main()
{
    int n;
    scanf("%d\n",&n);
    int ret = CountZero(n);
    printf("%d\n",ret);
    return 0;
}

这里写图片描述

另外

可扩展到:n!的二进制表示中最低位1中的位置。相当于求质因数的2的个数
原理是:
假如你把1 × 2 ×3× 4 ×……×N中每一个因数分解质因数,结果就像:
1 × 2 × 3 × (2 × 2) × 5 × (2 × 3) × 7 × (2 × 2 ×2) ×……

代码这里就不实现了

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目中的$b_n$的定义是$n$的阶乘,即$b_n=1*2*3*\cdots*n$。已知$b_3!=6$,$b_5!=120$,而$n!$的末尾会有很多个0,现在我们统计$n!$去除末尾的0之后最后有多少个0。注意到10是由$2*5$得到的,因此我们只需要统计$n!$中2和5的个数,然后取两者的最小值,即为$n!$末尾0的个数。显然2的个数远大于5的个数,因此我们只需要计算$n!$中5的因子个数。依次分别除以5,25,125……,并对每次得到的商进行累加即可。具体来讲,设$f(n)$表示$n!$中5的因子数,则有: $$f(n)=\left\lfloor \frac{n}{5}\right\rfloor +\left\lfloor\frac{n}{25}\right\rfloor+\left\lfloor\frac{n}{125}\right\rfloor+\cdots$$ 现在我们来看一下最后一个问题,即求$n!$除以末尾的0之后最后有多少个非0数字。很明显,这就是要求$n!$除以10之后最后一位非0数的个数,而这个数可以看成是$n!$中质因数2和5的个数之间的最小值。根据之前的计算,$n!$中5的因子数即为$n!$末尾0的个数,那么质因数2的个数又可以通过类似的方法来计算,即 $$g(n)=\left\lfloor \frac{n}{2}\right\rfloor +\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n}{8}\right\rfloor+\cdots$$ 综上所述,我们只需要求出$f(n)$和$g(n)$,然后取两者的最小值即可。同时,注意到$f(n)$和$g(n)$都可以用对数的形式表示,具体来讲,有: $$f(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{5^i}\right\rfloor,\quad g(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{2^i}\right\rfloor$$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值