题目描述:
给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第k小的元素。
请注意,它是排序后的第k小元素,而不是第k个元素。
示例:
matrix = [
[ 1, 5, 9],
[10, 11, 13],
[12, 13, 15]
],
k = 8,
返回 13。
解释:排序后的数组为{1, 5, 9, 10, 11, 12, 13, 13, 15}
解题思路:
这道题很巧妙的运用了二分查找的方法,但和普通的二分查找又有区别,考验了我们是否能够灵活的运用二分查找。
- 找出二维矩阵中最小的数left,最大的数right,那么第k小的数必定在left~right之间
- mid = (left + right) / 2;在二维矩阵中寻找小于等于mid的元素个数count
- 若这个count小于k,表明第k小的数在右半部分且不包含mid,即区间[mid+1, right]内,又保证了第k小的数在left~right之间
- 若这个count大于k,表明第k小的数在左半部分且可能包含mid,即[left, mid],又保证了第k小的数在left~right之间
- 因为每次循环中都保证了第k小的数在left~right之间,当left==right时,第k小的数即被找出,等于right
注意:这里的left mid right是数值,不是索引位置。
代码实现:
class Solution {
public:
int kthSmallest(vector<vector<int>>& matrix, int k) {
int rows = matrix.size();
int cols = rows;
int left = matrix[0][0];
int right = matrix[rows-1][cols-1];
while (left < right)
{
int mid = left + ((right - left) >> 1);
int n = findNotBiggerMidNumber(matrix, mid, rows, cols); //找到矩阵中小于等于mid的元素个数
if (n < k) { //第k小的数一定在[mid+1, right]内
left = mid + 1;
}
else { //第k小的数一定在[left, mid]内
right = mid;
}
}
return right;
}
private:
//寻找矩阵中小于等于mid的元素个数
int findNotBiggerMidNumber(const vector<vector<int>>& matrix, int mid, int rows, int cols)
{
int n = 0;
int i = rows - 1; //从左下角开始
int j = 0;
while (i >= 0 && j < cols) //以列为单位进行统计
{
if (matrix[i][j] > mid) {
--i;
}
else { //matrix[i][j] <= mid
++j;
n += (i + 1);
}
}
return n;
}
};