【动态规划】01背包问题

问题描述

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为方便讲解和理解,下面讲述的例子均先用具体的数字代入,例如:number=4,capacity=8

i(物品编号)1234
w(体积)2345
v(价值)3456

总体思路

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

背包问题的解决过程

在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i, j):当前背包容量为 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

  1. 建立模型,即求 max(V1X1 + V2X2 + … + VnXn);
  2. 寻找约束条件,W1X1 + W2X2 + … + WnXn < capacity;
  3. 寻找递推关系式,面对当前商品有两种可能性:
    • 包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
    • 还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j) = max{ V(i-1, j),V(i-1, j-w(i)) + v(i) }。

其中V(i-1,j)表示不装,V(i-1, j-w(i)) + v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

  • j < w(i)  V(i,j) = V(i-1,j)
  • j >= w(i)  V(i,j) = max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):
可以这么理解,如果要到达V(i,j)这一个状态有几种方式?
肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。
没有装进去很好理解,就是V(i-1, j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1, j - w(i))。由于最优性原理(上文讲到),V(i-1, j - w(i)) 就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

填表

首先初始化边界条件,V(0,j)=V(i,0)=0;
在这里插入图片描述
然后一行一行的填表:

  • 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
  • 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
  • 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }= max{9,4+6}= 10

所以填完表如下图:
在这里插入图片描述
表格填完,最优解即是V(number,capacity)=V(4,8)=10。

代码实现

#include <algorithm>
#include <vector>

using namespace std;

int findMaxValue(vector<pair<int, int>> goods, int capacity) {	//pair<体积, 价值>
	int n = goods.size();
	if (n == 0 || capacity == 0)
		return 0;

	vector<vector<int>> dp(n + 1, vector<int>(capacity + 1, 0));
	for (int i = 1; i <= n; ++i)		//i表示第i个商品
	{
		for (int j = 1; j <= capacity; ++j)	//j表示当前背包的容量为j
		{
			if (j < goods[i-1].first) {		//放不下第i个商品
				dp[i][j] = dp[i-1][j];
			}
			else {	//dp[i-1][j-goods[i-1].first] 表示背包容量为 j-goods[i-1].first 时在i-1个商品中的最优解
				dp[i][j] = max(dp[i-1][j], dp[i-1][j-goods[i-1].first] + goods[i-1].second);
			}
		}
	}

	return dp[n][capacity];
}

int main() {
	vector<pair<int, int>> goods{ make_pair(2, 3),
								  make_pair(3, 4),
								  make_pair(4, 5),
								  make_pair(5, 6) };

	printf("max value: %d\n\n", findMaxValue(goods, 8));

	return 0;
}

背包问题最优解回溯

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  • V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
  • V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
  • 一直遍历到i=0结束为止,所有解的组成都会找到。

就拿上面的例子来说吧:

  • 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
  • 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
  • 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
  • 有V(1,0)=V(0,0)=0,所以第1件商品没被选择。
    在这里插入图片描述

背包问题最终版详细代码实现:

#include<iostream>
using namespace std;
#include <algorithm>
 
int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
int bagV = 8;					        //背包大小
int dp[5][9] = { { 0 } };			        //动态规划表
int item[5];					        //最优解情况
 
void findMax() {					//动态规划
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
}
 
void findWhat(int i, int j) {				//最优解情况
	if (i >= 0) {
		if (dp[i][j] == dp[i - 1][j]) {
			item[i] = 0;
			findWhat(i - 1, j);
		}
		else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
			item[i] = 1;
			findWhat(i - 1, j - w[i]);
		}
	}
}
 
void print() {
	for (int i = 0; i < 5; i++) {			//动态规划表输出
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
	cout << endl;
 
	for (int i = 0; i < 5; i++)			//最优解输出
		cout << item[i] << ' ';
	cout << endl;
}
 
int main()
{
	findMax();
	findWhat(4, 8);
	print();
 
	return 0;
}
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页