记忆网络
文章平均质量分 94
dpbpnp
这个作者很懒,什么都没留下…
展开
-
End-To-End Memory Networks代码研读
本文学习的代码来自于知乎文章:https://zhuanlan.zhihu.com/p/29679742代码地址为:https://link.zhihu.com/?target=https%3A//github.com/domluna/memn2n数据地址为:http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz论文地址为:https://arxiv.org/abs/1503.088951 任务解决QA场景。所使用的.原创 2021-03-20 20:31:10 · 274 阅读 · 0 评论 -
论文代码研读:Collaborative Memory Network for Recommendation Systems
本文研读Collaborative Memory Network for Recommendation Systems论文复现代码,源代码来源于https://codeload.github.com/IamAdiSri/cmn4recosys/zip/master文章目录1. 论文思想2. 论文复现2.1 获取训练数据1. 论文思想本文采用记忆力神经网络的框架,综合CF和attention机制来选择记忆单元,预测item评分。2. 论文复现2.1 获取训练数据源码所使用的数据中用户数目为1698原创 2021-03-17 19:06:22 · 569 阅读 · 0 评论 -
论文精读:memory network以及End-To-End Memory Networks
该文提出了一个 memory network ,该网络基于long-term memory component。将该模型应用于QA(查询-回答)场景下原创 2021-03-16 08:27:30 · 665 阅读 · 1 评论 -
论文精读:Sequential Recommendation with User Memory Networks
文章目录1 背景2 RUM:recommend with user memory network2.1 记忆网络预测的整体流程2.2 memory matrix的更新读写设计2.2.1 从item角度设计读写策略2.2.2 从feature角度设计读写策略2.3 memory的更新读写对比总结1 背景现有方法缺陷1.并不是所有的历史行为都对用户未来喜好有用;2.现有的方法会将用户的历史序列用一个embedding进行表示,忽略了各个item之间的关系,以及各自的特征);就如上图所示,要预测用户原创 2021-03-16 16:36:36 · 1231 阅读 · 1 评论 -
论文精读:collaborative memory network for recommendation system
将两类CF模型(捕获全局结构的隐因子模型和捕获邻域结构的模型)以非线性的方式进行组合。使用记忆单元和注意力机制来学习user-item的邻域关系。目录1 简介2 collaborative memory network2.1 单跳2.1.1 user embedding2.1.2 neighborhood attention2.1.3 output model2.2 多跳总结1 简介现有的基于邻域的方法和基于隐因子的方法要么是只关注局部信息,要么只关注全局信息。记忆网络通常包含两部分:externa原创 2021-03-16 11:29:16 · 409 阅读 · 0 评论