《Python金融大数据风控建模实战》 第9章 模型的评估指标

16 篇文章 53 订阅
15 篇文章 0 订阅

《Python金融大数据风控建模实战》 第9章 模型的评估指标

本章引言

模型的开发基于历史数据,而模型的使用则针对未来的数据。为了模拟这种建模方式,将数据集分为三部分:训练集、验证集和测试集。模型在训练集上的误差,即真实结果与预测结果间的差异,称为训练误差或经验误差;模型在验证集与测试集上的误差称为泛化误差。
单个模型在训练集上训练希望训练误差较小,并在验证集上测试模型表现以确定单个模型的最优参数,当有多个候选模型时,需要在测试集上对比不同模型的测试表现,以选出最优的模型,一般这个过程称为嵌套交叉验证。
模型的表现如何量化是模型评估指标需要处理的问题,也称为性能度量,因此在内层交叉验证中,不同的模型评估指标会决定单个模型选择哪种最优参数组合;在外层交叉验证中会决定多个模型中选择哪个模型作为最优模型交付使用。可见,内层模型用于模型参数优化,外层交叉验证用于模型选择,即寻找最优模型。模型评估指标的选择与模型的开发目的息息相关,要根据实际应用场景确定模型评估指标。
根据不同阶段,模型评估指标分为模型线下开发阶段的评估指标和模型上线运行后的模型监测评估指标。
本章介绍模型开发阶段的评估指标,而模型上线后的评估方法将在第11章介绍。

Python代码实现及注释

# 9章:模型评价指标

import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import variable_bin_methods as varbin_meth
import variable_encode as var_encode

'''
从sklearn.metrics中引入confusion_matrix,recall_score, auc, roc_curve,precision_score,accuracy_score
'''
from sklearn.metrics import confusion_matrix,recall_score, auc, roc_curve,precision_score,accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression

'''
从sklearn.metrics中引入precision_recall_curve
'''
from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.sans-serif']=['SimHei']   # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False     # 正常显示负号
matplotlib.use(arg='Qt5Agg')
import warnings
warnings.filterwarnings("ignore") ##忽略警告
##数据读取
def data_read(data_path,file_name):
    df = pd.read_csv( os.path.join(data_path, file_name), delim_whitespace = True, header = None )
    ##变量重命名
    columns = ['status_account','duration','credit_history','purpose', 'amount',
               'svaing_account', 'present_emp', 'income_rate', 'personal_status',
               'other_debtors', 'residence_info', 'property', 'age',
               'inst_plans', 'housing', 'num_credits',
               'job', 'dependents', 'telephone', 'foreign_worker', 'target']
    df.columns = columns
    ##将标签变量由状态1,2转为0,1;0表示好用户,1表示坏用户
    df.target = df.target - 1
      ##数据分为data_train和 data_test两部分,训练集用于得到编码函数,验证集用已知的编码规则对验证集编码
    data_train, data_test = train_test_split(df, test_size=0.2, random_state=0,stratify=df.target)
    return data_train, data_test
##离散变量与连续变量区分   
def category_continue_separation(df,feature_names):
    categorical_var = []
    numerical_var = []
    if 'target' in feature_names:
        feature_names.remove('target')
    ##先判断类型,如果是int或float就直接作为连续变量
    numerical_var = list(df[feature_names].select_dtypes(include=['int','float','int32','float32','int64','float64']).columns.values)
    categorical_var = [x for x in feature_names if x not in numerical_var]
    return categorical_var,numerical_var
if __name__ == '__main__':
    path = 'D:\\code\\chapter9'
    data_path = os.path.join(path ,'data')
    file_name = 'german.csv'
    ##读取数据
    data_train, data_test = data_read(data_path,file_name)
    sum(data_train.target ==0)
    data_train.target.sum()
    ##区分离散变量与连续变量
    feature_names = list(data_train.columns)
    feature_names.remove('target')
    categorical_var,numerical_var = category_continue_separation(data_train,feature_names)
    for s in set(numerical_var):
        print('变量'+s+'可能取值'+str(len(data_train[s].unique())))
        if len(data_train[s].unique())<=10:
            categorical_var.append(s)
            numerical_var.remove(s)
            ##同时将后加的数值变量转为字符串
            index_1 = data_train[s].isnull()
            if sum(index_1) > 0:
                data_train.loc[~index_1,s] = data_train.loc[~index_1,s].astype('str')
            else:
                data_train[s] = data_train[s].astype('str')
            index_2 = data_test[s].isnull()
            if sum(index_2) > 0:
                data_test.loc[~index_2,s] = data_test.loc[~index_2,s].astype('str')
            else:
                data_test[s] = data_test[s].astype('str')

    ###连续变量分箱
    dict_cont_bin = {}
    for i in numerical_var:
        print(i)
        dict_cont_bin[i],gain_value_save , gain_rate_save = varbin_meth.cont_var_bin(data_train[i], data_train.target, method=2, mmin=3, mmax=12,
                                     bin_rate=0.01, stop_limit=0.05, bin_min_num=20)
    ###离散变量分箱
    dict_disc_bin = {}
    del_key = []
    for i in categorical_var:
        dict_disc_bin[i],gain_value_save , gain_rate_save ,del_key_1 = varbin_meth.disc_var_bin(data_train[i], data_train.target, method=2, mmin=3,
                                     mmax=8, stop_limit=0.05, bin_min_num=20)
        if len(del_key_1)>0 :
            del_key.extend(del_key_1)
    ###删除分箱数只有1个的变量
    if len(del_key) > 0:
        for j in del_key:
            del dict_disc_bin[j]
    
    ##训练数据分箱
    ##连续变量分箱映射
    df_cont_bin_train = pd.DataFrame()
    for i in dict_cont_bin.keys():
        df_cont_bin_train = pd.concat([ df_cont_bin_train , varbin_meth.cont_var_bin_map(data_train[i], dict_cont_bin[i]) ], axis = 1)
    ##离散变量分箱映射
#    ss = data_train[list( dict_disc_bin.keys())]
    df_disc_bin_train = pd.DataFrame()
    for i in dict_disc_bin.keys():
        df_disc_bin_train = pd.concat([ df_disc_bin_train , varbin_meth.disc_var_bin_map(data_train[i], dict_disc_bin[i]) ], axis = 1)

  
    ##测试数据分箱
    ##连续变量分箱映射
    df_cont_bin_test = pd.DataFrame()
    for i in dict_cont_bin.keys():
        df_cont_bin_test = pd.concat([ df_cont_bin_test , varbin_meth.cont_var_bin_map(data_test[i], dict_cont_bin[i]) ], axis = 1)
    ##离散变量分箱映射
#    ss = data_test[list( dict_disc_bin.keys())]
    df_disc_bin_test = pd.DataFrame()
    for i in dict_disc_bin.keys():
        df_disc_bin_test = pd.concat([ df_disc_bin_test , varbin_meth.disc_var_bin_map(data_test[i], dict_disc_bin[i]) ], axis = 1)
    
    ###组成分箱后的训练集与测试集
    df_disc_bin_train['target'] = data_train.target
    data_train_bin = pd.concat([df_cont_bin_train,df_disc_bin_train],axis=1)
    df_disc_bin_test['target'] = data_test.target
    data_test_bin = pd.concat([df_cont_bin_test,df_disc_bin_test],axis=1)

    data_train_bin.reset_index(inplace=True,drop=True)
    data_test_bin.reset_index(inplace=True,drop=True)
    
    ###WOE编码
    var_all_bin = list(data_train_bin.columns)
    var_all_bin.remove('target')
    ##训练集WOE编码
    df_train_woe, dict_woe_map, dict_iv_values ,var_woe_name = var_encode.woe_encode(data_train_bin,data_path,var_all_bin, data_train_bin.target,'dict_woe_map', flag='train')
    ##测试集WOE编码
    df_test_woe, var_woe_name = var_encode.woe_encode(data_test_bin,data_path,var_all_bin, data_test_bin.target, 'dict_woe_map',flag='test')

    ####取出训练数据与测试数据
    x_train = df_train_woe[var_woe_name]
    x_train = np.array(x_train)
    y_train = np.array(data_train_bin.target)
    
    x_test = df_test_woe[var_woe_name]
    x_test = np.array(x_test)
    y_test = np.array(data_test_bin.target)
        
   
    ########logistic模型
     ##参数优化
    lr_param = {'C': [0.01, 0.1, 0.2, 0.5, 1, 1.5, 2],
                'class_weight': [{1: 1, 0: 1}, {1: 2, 0: 1}, {1: 3, 0: 1}]}
    lr_gsearch = GridSearchCV(
        estimator=LogisticRegression(random_state=0, fit_intercept=True, penalty='l2', solver='saga'),
        param_grid=lr_param, cv=3, scoring='f1', n_jobs=-1, verbose=2)
    lr_gsearch.fit(x_train, y_train)
    print('logistic model best_score_ is {0},and best_params_ is {1}'.format(lr_gsearch.best_score_,
                                                                             lr_gsearch.best_params_))
    
    ##最有参数训练模型
    LR_model_2 = LogisticRegression(C=lr_gsearch.best_params_['C'], penalty='l2', solver='saga',
                                    class_weight=lr_gsearch.best_params_['class_weight'])
    
    LR_model_fit = LR_model_2.fit(x_train, y_train)
    
    ###看一下混沌矩阵
    y_pred = LR_model_fit.predict(x_test)
    cnf_matrix = confusion_matrix(y_test, y_pred)
    recall_value = recall_score(y_test, y_pred)
    precision_value = precision_score(y_test, y_pred)
    acc = accuracy_score(y_test, y_pred)
    print(cnf_matrix)
    print('Validation set:  model recall is {0},and percision is {1}'.format(recall_value,
                 precision_value)) 


    ##查看训练集、验证集与测试集
    '''
    predict_proba(self,X):用于模型预测,与predic()方法不同的是,该方法给出概率预测结果,如ROC曲线就需要模型提供概率输出才可以进行计算
    '''
    y_score_train = LR_model_fit.predict_proba(x_train)[:, 1]
    y_score_test = LR_model_fit.predict_proba(x_test)[:, 1]
    
    train_precision, train_recall, _ = precision_recall_curve(y_train, y_score_train)
    test_precision, test_recall, _ = precision_recall_curve(y_test, y_score_test)
    
    plt.plot(train_recall, train_precision,color = 'r', linestyle='-',label='训练集P-R曲线')
    plt.plot(test_recall, test_precision,color = 'b', linestyle=':',label='测试集P-R曲线')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.legend()
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    
   
    
    ###看一下正负样本的概率直方图
    df_pre_all = pd.DataFrame({'y_score':y_score_test,'y_test':y_test})
    df_pre_good = df_pre_all.loc[df_pre_all.y_test==0,]
    df_pre_good = df_pre_good.sort_values(['y_score'])
    df_pre_bad = df_pre_all.loc[df_pre_all.y_test==1,]
    df_pre_bad = df_pre_bad.sort_values(['y_score'])
    
    plt.figure(figsize=(10,6))    
    plt.hist(df_pre_good.y_score, bins =100, color = 'r',alpha=0.5,rwidth= 0.6, normed=True,label='好样本')
    plt.hist(df_pre_bad.y_score, bins =100, color = 'b',alpha=0.5,rwidth= 0.6, normed=True,label='坏样本')
    plt.legend()
    

    
    ####ROC曲线
    ##计算fpr与tpr
    fpr, tpr, thresholds = roc_curve(y_test, y_score_test)
    ##计算auc值
    roc_auc = auc(fpr, tpr)
    ar = 2*roc_auc-1
    gini = ar
    ##结果绘图
    plt.figure(figsize=(10,6))
    lw = 2
    fontsize_1 = 16
    plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xticks( fontsize=fontsize_1)
    plt.yticks( fontsize=fontsize_1)
    plt.xlabel('FPR',fontsize=fontsize_1)
    plt.ylabel('TPR',fontsize=fontsize_1)
    plt.title('ROC',fontsize=fontsize_1)
    plt.legend(loc="lower right",fontsize=fontsize_1)
    
   
    ####ks曲线
    plt.figure(figsize=(10,6))
    fontsize_1 = 12
    plt.plot(np.linspace(0,1,len(tpr)),tpr,'--',color='black', label='正样本洛伦兹曲线')
    plt.plot(np.linspace(0,1,len(tpr)),fpr,':',color='black', label='负样本洛伦兹曲线')
    plt.plot(np.linspace(0,1,len(tpr)),tpr - fpr,'-',color='grey')
    plt.grid()
    plt.xticks( fontsize=fontsize_1)
    plt.yticks( fontsize=fontsize_1)
    plt.xlabel('概率分组',fontsize=fontsize_1)
    plt.ylabel('累积占比%',fontsize=fontsize_1)
    plt.legend(fontsize=fontsize_1)
    print( max(tpr - fpr))
    
    ####计算AR。gini等
    fpr, tpr, thresholds = roc_curve(y_test, y_score_test)
    roc_auc = auc(fpr, tpr)
    ks = max(tpr - fpr)
    ar = 2*roc_auc-1
    gini = ar
    print('test set:  model AR is {0},and ks is {1}'.format(ar,
                 ks)) 
    ##计算recall、precision
    y_pred = LR_model_fit.predict(x_test)
    cnf_matrix = confusion_matrix(y_test, y_pred)
    recall_value = recall_score(y_test, y_pred)
    precision_value = precision_score(y_test, y_pred)
    acc = accuracy_score(y_test, y_pred)
    print('test set:  model recall is {0},and percision is {1}'.format(recall_value,
                 precision_value)) 
    
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值