剑指 Offer II 012. 左右两边子数组的和相等

该篇博客介绍了如何使用前缀和思想解决编程面试中的一道题目——寻找数组的中心下标。中心下标使得其左侧所有元素之和等于右侧所有元素之和。通过构建前缀和数组,遍历并比较每个元素两侧的和,可以找到满足条件的中心下标。若不存在,则返回-1。示例中给出了具体的代码实现。
摘要由CSDN通过智能技术生成
一、题目

剑指 Offer II 012. 左右两边子数组的和相等
同Leetcode 724. 寻找数组的中心下标

给你一个整数数组 nums ,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回
-1 。

示例 1:
输入:nums = [1,7,3,6,5,6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1+ 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。
二、解题思路

题解参考

前缀和思想: 记录的是不包含本位置元素的前缀和
🐷 构建前缀和数组prefix,注意填充完毕之后,prefix长于nums,第一位是0,最后一位是总和

三、代码
class Solution:	
	def pivotIndex(self, nums: List[int]) -> int:       
	# 前缀和思想,记录的是不包含本位置元素的前缀和       
		temp_sum = 0       
		prefix = [] # 构建前缀和数组,注意填充完毕之后,prefix长于nums,第一位是0,最后一位是总和       
		for i in nums:
			prefix.append(temp_sum)          
			temp_sum += i       
		all_sum = temp_sum # 最后一位是总和,不必重复使用sum(nums)计算了
	# nums[i]元素的左边的和为prefix[i],右边的和为all_sum - nums[i] - prefix[i]       
		for i in range(len(nums)):           
			if prefix[i] == all_sum - nums[i] - prefix[i]:
				return i # 找到则返回       
		return -1 # 找不到返回-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>