一、题目
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums= [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
二、解题思路
暴力枚举,即枚举数组中的每一个数 x,寻找数组中是否存在 target - x的时间复杂度:O(N^2)
进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?
方法:哈希法 dict是用空间来换取时间的一种方法
创建一个哈希表,遍历每一个 x,我们首先查询哈希表中是否存在 target - x,若 target - x存在于哈希表中,我们就可以直接返回结果了。若 target - x 不存在,则将 target - x 插入到哈希表中,即可保证不会让target - x 和自己匹配,同时方便让后续遍历的数字使用。
三、代码
# 解法:哈希法
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
dic = {} # 用字典创建一个哈希表
for i,v in enumerate(nums):# i:index;v:value
if target - v in dic:
return [dic[target - v],i]
dic[v]= i # 追加值到字典中
return []
🐖 因为题目返回的是下标,所以我们将数组nums的值作为dic的key,nums的值对应的下标作为dic的value。
四、复杂度分析
时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。
空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。