Java经典排序算法

提示:本文仅供自己学习


一、排序算法概念及分类

1、排序概念

将杂乱无章的数据元素,通过一定方法按关键字顺序排列的过程叫做排序。

2、排序分类

非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。
线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。


二、十大排序算法

1、冒泡排序(BubbleSort)

基本思想:
两个数比较大小,较大的数下沉,较小的数上浮。

算法描述:
1. 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
3. 针对所有的元素重复以上的步骤,除了最后一个;
4. 重复步骤1至3,直到排序完成。

代码示例:

		public static int[] bubbleSort(int[] array) {
			if (array.length == 0)
				return array;
			for (int i = 0; i < array.length; i++)
				for (int j = 0; j < array.length - 1 - i; j++)
					if (array[j + 1] < array[j]) {
						int temp = array[j + 1];
						array[j + 1] = array[j];
						array[j] = temp;
					}
			return array;
		}

2、选择排序(Selection sort)

基本思想:
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

算法描述:(n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果.)
初始状态,无序区为R[1…n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。
该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了

代码示例:

			public static int[] selectionSort(int[] array) {
				if (array.length == 0)
					 return array;
				for (int i = 0; i < array.length; i++) {
					int minIndex = i;
					for (int j = i; j < array.length; j++) {
						if (array[j] < array[minIndex]) //找到最小的数
							minIndex = j; //将最小数的索引保存
					}
					int temp = array[minIndex];
					array[minIndex] = array[i];
					array[i] = temp;
				}
				return array;
			}

3、插入排序(Insertion Sort)

基本思想:
在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。
如此反复循环,直到全部排好顺序。

算法描述:
从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中从后向前扫描;
如果该元素(已排序)大于新元素,将该元素移到下一位置;
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
将新元素插入到该位置后;
重复步骤2~5。

代码示例:

			public static int[] insertionSort(int[] array) {
				if (array.length == 0)
					return array;
				int current;
				for (int i = 0; i < array.length - 1; i++) {
					current = array[i + 1];
					int preIndex = i;
					while (preIndex >= 0 && current < array[preIndex]) {
						array[preIndex + 1] = array[preIndex];
						preIndex--;
					}
					array[preIndex + 1] = current;
				}
				return array;
			}

4、希尔排序(Shell Sort)

基本思想:
希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。
它与插入排序的不同之处在于,它会优先比较距离较远的元素。

算法描述:
选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列个数k,对序列进行k 趟排序;
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。
仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

代码示例:

			 public static int[] ShellSort(int[] array) {
				int len = array.length;
				int temp, gap = len / 2;
				while (gap > 0) {
					for (int i = gap; i < len; i++) {
						temp = array[i];
						int preIndex = i - gap;
						while (preIndex >= 0 && array[preIndex] > temp) {
							array[preIndex + gap] = array[preIndex];
							preIndex -= gap;
						}
						array[preIndex + gap] = temp;
					}
					gap /= 2;
				}
				return array;
			}

算法分析:
希尔排序的核心在间隔序列,既可以提前设定好间隔,也可以动态的定义间隔序列。

			while (gap < len / 3) {          // 动态定义间隔序列
				gap = gap * 3 + 1;
			}

5、归并排序(Merge Sort)

基本思想:
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序。若将两个有序表合并成一个有序表,称2-路归并。

算法描述:
把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。

代码示例:

			/**
			 * 归并排序
			 *
			 * @param array
			 * @return
			 */
			public static int[] MergeSort(int[] array) {
				if (array.length < 2) return array;
				int mid = array.length / 2;
				int[] left = Arrays.copyOfRange(array, 0, mid);
				int[] right = Arrays.copyOfRange(array, mid, array.length);
				return merge(MergeSort(left), MergeSort(right));
			}
			/**
			 * 归并排序——将两段排序好的数组结合成一个排序数组
			 *
			 * @param left
			 * @param right
			 * @return
			 */
			public static int[] merge(int[] left, int[] right) {
				int[] result = new int[left.length + right.length];
				for (int index = 0, i = 0, j = 0; index < result.length; index++) {
					if (i >= left.length)
						result[index] = right[j++];
					else if (j >= right.length)
						result[index] = left[i++];
					else if (left[i] > right[j])
						result[index] = right[j++];
					else
						result[index] = left[i++];
				}
				return result;
			}

6、快速排序 (Quick Sort)

基本思想(分治):
通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以到达整个序列有序。

算法描述:
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。
具体算法描述如下:
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

代码示例:

			/**
			 * 快速排序方法
			 * @param array
			 * @param start
			 * @param end
			 * @return
			 */
			public static int[] QuickSort(int[] array, int start, int end) {
				if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
				int smallIndex = partition(array, start, end);
				if (smallIndex > start)
					QuickSort(array, start, smallIndex - 1);
				if (smallIndex < end)
					QuickSort(array, smallIndex + 1, end);
				return array;
			}
			/**
			 * 快速排序算法——partition
			 * @param array
			 * @param start
			 * @param end
			 * @return
			 */
			public static int partition(int[] array, int start, int end) {
				int pivot = (int) (start + Math.random() * (end - start + 1));
				int smallIndex = start - 1;
				swap(array, pivot, end);
				for (int i = start; i <= end; i++)
					if (array[i] <= array[end]) {
						smallIndex++;
						if (i > smallIndex)
							swap(array, i, smallIndex);
					}
				return smallIndex;
			}
			 
			/**
			 * 交换数组内两个元素
			 * @param array
			 * @param i
			 * @param j
			 */
			public static void swap(int[] array, int i, int j) {
				int temp = array[i];
				array[i] = array[j];
				array[j] = temp;
			}

7、堆排序(Heap Sort)

基本思想:
堆排序(HeapSort)是指利用堆这种数据结构所涉及的一种排序算法。
堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于它的父节点。

算法描述:
将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。
不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

代码示例:

			//声明全局变量,用于记录数组array的长度;
			static int len;
			/**
			 * 堆排序算法
			 *
			 * @param array
			 * @return
			 */
			public static int[] HeapSort(int[] array) {
				len = array.length;
				if (len < 1) return array;
				//1.构建一个最大堆
				buildMaxHeap(array);
				//2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
				while (len > 0) {
					swap(array, 0, len - 1);
					len--;
					adjustHeap(array, 0);
				}
				return array;
			}
			/**
			 * 建立最大堆
			 *
			 * @param array
			 */
			public static void buildMaxHeap(int[] array) {
				//从最后一个非叶子节点开始向上构造最大堆
				for (int i = (len/2 - 1); i >= 0; i--) {
					adjustHeap(array, i);
				}
			}
			/**
			 * 调整使之成为最大堆
			 *
			 * @param array
			 * @param i
			 */
			public static void adjustHeap(int[] array, int i) {
				int maxIndex = i;
				//如果有左子树,且左子树大于父节点,则将最大指针指向左子树
				if (i * 2 < len && array[i * 2] > array[maxIndex])
					maxIndex = i * 2;
				//如果有右子树,且右子树大于父节点,则将最大指针指向右子树
				if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
					maxIndex = i * 2 + 1;
				//如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
				if (maxIndex != i) {
					swap(array, maxIndex, i);
					adjustHeap(array, maxIndex);
				}
			}

8、计数排序(Counting Sort)

基本思想:
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。
作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法描述:
找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

代码示例:

			/**
			 * 计数排序
			 *
			 * @param array
			 * @return
			 */
			public static int[] CountingSort(int[] array) {
				if (array.length == 0) return array;
				int bias, min = array[0], max = array[0];
				for (int i = 1; i < array.length; i++) {
					if (array[i] > max)
						max = array[i];
					if (array[i] < min)
						min = array[i];
				}
				bias = 0 - min;
				int[] bucket = new int[max - min + 1];
				Arrays.fill(bucket, 0);
				for (int i = 0; i < array.length; i++) {
					bucket[array[i] + bias]++;
				}
				int index = 0, i = 0;
				while (index < array.length) {
					if (bucket[i] != 0) {
						array[index] = i - bias;
						bucket[i]--;
						index++;
					} else
						i++;
				}
				return array;
			}

9、桶排序(Bucket Sort)

基本思想:
桶排序是计数排序的升级版。
它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

算法描述:
设置一个定量的数组当作空桶;
遍历输入数据,并且把数据一个一个放到对应的桶里去;
对每个不是空的桶进行排序;
从不是空的桶里把排好序的数据拼接起来。

代码示例:

			/**
			 * 桶排序
			 * 
			 * @param array
			 * @param bucketSize
			 * @return
			 */
			public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
				if (array == null || array.size() < 2)
					return array;
				int max = array.get(0), min = array.get(0);
				// 找到最大值最小值
				for (int i = 0; i < array.size(); i++) {
					if (array.get(i) > max)
						max = array.get(i);
					if (array.get(i) < min)
						min = array.get(i);
				}
				int bucketCount = (max - min) / bucketSize + 1;
				ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
				ArrayList<Integer> resultArr = new ArrayList<>();
				for (int i = 0; i < bucketCount; i++) {
					bucketArr.add(new ArrayList<Integer>());
				}
				for (int i = 0; i < array.size(); i++) {
					bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
				}
				for (int i = 0; i < bucketCount; i++) {
					if (bucketSize == 1) { // 如果带排序数组中有重复数字时 
						for (int j = 0; j < bucketArr.get(i).size(); j++)
							resultArr.add(bucketArr.get(i).get(j));
					} else {
						if (bucketCount == 1)
							bucketSize--;
						ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
						for (int j = 0; j < temp.size(); j++)
							resultArr.add(temp.get(j));
					}
				}
				return resultArr;
			}

10、基数排序(Radix Sort)

基本思想:
基数排序是按照低位先排序,然后收集;
再按照高位排序,然后再收集;依次类推,直到最高位。
有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。
最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法描述:
取得数组中的最大数,并取得位数;
arr为原始数组,从最低位开始取每个位组成radix数组;
对radix进行计数排序(利用计数排序适用于小范围数的特点);

代码示例:

			/**
			 * 基数排序
			 * @param array
			 * @return
			 */
			public static int[] RadixSort(int[] array) {
				if (array == null || array.length < 2)
					return array;
				// 1.先算出最大数的位数;
				int max = array[0];
				for (int i = 1; i < array.length; i++) {
					max = Math.max(max, array[i]);
				}
				int maxDigit = 0;
				while (max != 0) {
					max /= 10;
					maxDigit++;
				}
				int mod = 10, div = 1;
				ArrayList<ArrayList<Integer>> bucketList = new ArrayList<ArrayList<Integer>>();
				for (int i = 0; i < 10; i++)
					bucketList.add(new ArrayList<Integer>());
				for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
					for (int j = 0; j < array.length; j++) {
						int num = (array[j] % mod) / div;
						bucketList.get(num).add(array[j]);
					}
					int index = 0;
					for (int j = 0; j < bucketList.size(); j++) {
						for (int k = 0; k < bucketList.get(j).size(); k++)
							array[index++] = bucketList.get(j).get(k);
						bucketList.get(j).clear();
					}
				}
				return array;
			}

总结

写本文的目的在于个人学习,文章部分内容借鉴了许多前辈的总结,其中也掺杂了一些个人理解,如有发现错误的地方望指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值