BZOJ 1251 序列终结者 平衡树 无旋treap

因为感觉 S p l a y Splay Splay比较难学。所以尝试去学了一下功能也同样强大的无旋 T r e a p Treap Treap,但是并没有理解很透彻。
无旋 T r e a p Treap Treap主要只有两个操作:
1. s p l i t : 1.split: 1.split: 把当前的树分割为两个平衡树。假设当前要取出前一个树的大小为 k k k,比较左子树的大小和 k k k,假如 k ≤ s z [ l s [ r t ] ] k\leq sz[ls[rt]] ksz[ls[rt]],那么当前根一定是右子树的根,然后递归左儿子。左儿子的第一个根是左边的根,第二个根是右子树根的左儿子。对于另外一种情形,类似的讨论。
2. m e r g e : 2.merge: 2.merge合并两个平衡树。而且总是把权值小的那个根作为最终的根。这样合并的方式就一定是唯一的。假设有两个树 r t 1 , r t 2 rt1,rt2 rt1,rt2,并且第一个根的权值小于第二个根。就递归把第一个根的右儿子和第二个根合并。
这个题的题意是开始给出一个全部为0的序列。
然后支持三种操作:区间加,区间最值和区间翻转。
这里用 T r e a p Treap Treap方便实现区间翻转,直接分裂两次取出 [ l , r ] [l,r] [l,r]这一段,然后在根上打上标记,同时交换左右两个儿子。对于区间加也用同样的标记的方法。区间最值在 p u s h u p pushup pushup的过程中更新。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=5e4+7; 
int n,m,x,y,z,rt;
int r[N],sz[N],ls[N],rs[N];
ll v[N],mx[N];
int tag1[N],tag2[N];
int tot=0; 
int build(int rt) {
	r[++tot]=rand();
	sz[tot]=1;
	return tot;
}
void add(int rt,int val) {
	mx[rt]+=val;
	tag2[rt]+=val;
	v[rt]+=val;
}
void rotate(int rt) {
	swap(ls[rt],rs[rt]);
	tag1[rt]^=1;
}
void pushup(int rt) {
	sz[rt]=sz[ls[rt]]+sz[rs[rt]]+1;
	mx[rt]=v[rt];
	if(ls[rt]) mx[rt]=max(mx[rt],mx[ls[rt]]);
	if(rs[rt]) mx[rt]=max(mx[rt],mx[rs[rt]]);
}
void pushdown(int rt) {
	if(tag1[rt]) {
		if(ls[rt]) rotate(ls[rt]);
		if(rs[rt]) rotate(rs[rt]);
		tag1[rt]=0;
	}
	if(tag2[rt]) {
		if(ls[rt]) add(ls[rt],tag2[rt]);
		if(rs[rt]) add(rs[rt],tag2[rt]);
		tag2[rt]=0;
	}
}
void split(int rt,int k,int &x,int &y) {
	if(!rt) { x=y=0;return; }
	pushdown(rt);
	if(sz[ls[rt]]<k) {
		x=rt;
		split(rs[rt],k-sz[ls[rt]]-1,rs[x],y);
	}
	else {
		y=rt;
		split(ls[rt],k,x,ls[y]); 
	}
	pushup(rt);
}
int merge(int x,int y) {
	if(!x||!y) return x+y;
	pushdown(x);
	pushdown(y);  
	if(r[x]<r[y]) {
		rs[x]=merge(rs[x],y);
		pushup(x);
		return x;
	}
	else {
		ls[y]=merge(x,ls[y]);
		pushup(y);
		return y;
	}
}

int main() {
	srand(20190828);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) 
		rt=merge(rt,build(i));
	while(m--) {
		int opt,l,r;
		scanf("%d%d%d",&opt,&l,&r);
		if(opt==1) {
			ll c;
			scanf("%lld",&c);
			split(rt,l-1,x,y);
			split(y,r-l+1,y,z);
			add(y,c);
			rt=merge(merge(x,y),z);
		}
		else if(opt==2) {
			split(rt,l-1,x,y);
			split(y,r-l+1,y,z);
			rotate(y);
			rt=merge(merge(x,y),z);
		}
		else {
			split(rt,l-1,x,y);
			split(y,r-l+1,y,z);
			printf("%lld\n",mx[y]);
			rt=merge(merge(x,y),z);
		}
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值