BZOJ 2330 糖果 最长路+差分约束

n ≤ 1 e 5 n\leq1e5 n1e5个小朋友,每个小朋友至少要分到一个糖果,然后给出 m ≤ 1 e 5 m\leq1e5 m1e5个条件,分别是 A = B A=B A=B A &lt; B A&lt;B A<B A ≥ B A\geq B AB A &gt; B A&gt;B A>B A ≤ B A\leq B AB。求问要满足所有小朋友至少要多少个糖果。如果不能满足直接输出 − 1 -1 1
典型的差分约束。要求的是最小值,全部改写为 X i − X j ≥ C X_{i}-X_{j}\geq C XiXjC的形式。然后由 X j X_j Xj X i X_i Xi连一条长度为 C C C的有向边,然后求最长路即可。这里增加一个 X 0 X_0 X0权值为 0 0 0的源点,对于每个点显然满足 X i − X 0 ≥ 1 X_i-X_0\geq1 XiX01,求出最长路求和即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=1e5+7;
int n,m;
struct edge{ int v,w; };
vector<edge> G[N];
bool inq[N];
int dis[N],cnt[N];
ll spfa() {
	queue<int> q;
	q.push(0);
	while(!q.empty()) {
		int u=q.front();
		q.pop();
		inq[u]=0;
		for(int i=0;i<G[u].size();i++) {
			int v=G[u][i].v;
			int w=G[u][i].w;
			if(dis[v]<dis[u]+w) {
				dis[v]=dis[u]+w;
				if(!inq[v]) {
					q.push(v);
					inq[v]=1;
					if(++cnt[v]>=n) 
						return -1;
				}
			}
		}
	}
	ll ans=0;
	for(int i=1;i<=n;i++)
		ans+=dis[i];
	return ans;
}
int main() {
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
		G[0].push_back({i,1});
	for(int i=1;i<=m;i++) {
		int u,v,opt;
		scanf("%d%d%d",&opt,&u,&v);
		if(opt==1) {
			G[v].push_back({u,0});
			G[u].push_back({v,0});
		}
		if(opt==2) {
			G[u].push_back({v,1});
		}
		if(opt==3) {
			G[v].push_back({u,0});
		}
		if(opt==4) {
			G[v].push_back({u,1});
		}
		if(opt==5) {
			G[u].push_back({v,0});
		}
	}
	ll ans=spfa();
	printf("%lld\n",ans); 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值