有
n
≤
1
e
5
n\leq1e5
n≤1e5个小朋友,每个小朋友至少要分到一个糖果,然后给出
m
≤
1
e
5
m\leq1e5
m≤1e5个条件,分别是
A
=
B
A=B
A=B,
A
<
B
A<B
A<B,
A
≥
B
A\geq B
A≥B,
A
>
B
A>B
A>B,
A
≤
B
A\leq B
A≤B。求问要满足所有小朋友至少要多少个糖果。如果不能满足直接输出
−
1
-1
−1。
典型的差分约束。要求的是最小值,全部改写为
X
i
−
X
j
≥
C
X_{i}-X_{j}\geq C
Xi−Xj≥C的形式。然后由
X
j
X_j
Xj向
X
i
X_i
Xi连一条长度为
C
C
C的有向边,然后求最长路即可。这里增加一个
X
0
X_0
X0权值为
0
0
0的源点,对于每个点显然满足
X
i
−
X
0
≥
1
X_i-X_0\geq1
Xi−X0≥1,求出最长路求和即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=1e5+7;
int n,m;
struct edge{ int v,w; };
vector<edge> G[N];
bool inq[N];
int dis[N],cnt[N];
ll spfa() {
queue<int> q;
q.push(0);
while(!q.empty()) {
int u=q.front();
q.pop();
inq[u]=0;
for(int i=0;i<G[u].size();i++) {
int v=G[u][i].v;
int w=G[u][i].w;
if(dis[v]<dis[u]+w) {
dis[v]=dis[u]+w;
if(!inq[v]) {
q.push(v);
inq[v]=1;
if(++cnt[v]>=n)
return -1;
}
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
ans+=dis[i];
return ans;
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
G[0].push_back({i,1});
for(int i=1;i<=m;i++) {
int u,v,opt;
scanf("%d%d%d",&opt,&u,&v);
if(opt==1) {
G[v].push_back({u,0});
G[u].push_back({v,0});
}
if(opt==2) {
G[u].push_back({v,1});
}
if(opt==3) {
G[v].push_back({u,0});
}
if(opt==4) {
G[v].push_back({u,1});
}
if(opt==5) {
G[u].push_back({v,0});
}
}
ll ans=spfa();
printf("%lld\n",ans);
return 0;
}