洛谷P2679 子串 线性dp

给出 n ≤ 2 e 3 n\leq2e3 n2e3的串 A A A,以及 m ≤ 2 e 2 m\leq2e2 m2e2的串 B B B,现在求问从串 A A A中选择若干的字符并且按照原有的顺序形成 k ≤ 2 e 2 k\leq2e2 k2e2个循环的 B B B串有多少种方案。
不是很会做的dp,不过这个有些类似 L C S LCS LCS的思想。
f i , j , k , 0 ∣ 1 f_{i,j,k,0|1} fi,j,k,01表示 A A A串匹配到 i i i位, B B B串匹配到 j j j位,匹配了 k k k B B B串,并且当前位不选|选的方案数。
i ≥ 0 i\geq0 i0 f i , 0 , 0 , 0 = 1 , f i , 0 , 0 , 1 = 0 f_{i,0,0,0}=1,f_{i,0,0,1}=0 fi,0,0,0=1,fi,0,0,1=0,因为取 0 0 0个空串只有 1 1 1种,但是限制取当前这位则不存在。 j > 0 j>0 j0 f 0 , j , 0 , 0 = f 0 , j , 0 , 1 = 0 f_{0,j,0,0}=f_{0,j,0,1}=0 f0,j,0,0=f0,j,0,1=0,没有选择的方案。
转移有: f i , j , k , 0 = f i − 1 , j , k , 0 + f i − 1 , j , k , 1 f_{i,j,k,0}=f_{i-1,j,k,0}+f_{i-1,j,k,1} fi,j,k,0=fi1,j,k,0+fi1,j,k,1
如果 a i = b j a_{i}=b_{j} ai=bj f i , j , k , 1 = f i − 1 , j − 1 , k − 1 , 0 + f i − 1 , j − 1 , k − 1 , 1 + f i − 1 , j − 1 , k , 1 f_{i,j,k,1}=f_{i-1,j-1,k-1,0}+f_{i-1,j-1,k-1,1}+f_{i-1,j-1,k,1} fi,j,k,1=fi1,j1,k1,0+fi1,j1,k1,1+fi1,j1,k,1
否则 a i ≠ b j a_{i}≠b_{j} ai=bj f i , j , k , 1 = 0 f_{i,j,k,1}=0 fi,j,k,1=0

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const int N=1e3+7; 
char A[N],B[N];
int f[2][205][205][2];
int main() {
	int n,m,K;
	scanf("%d%d%d",&n,&m,&K);
	scanf("%s%s",A+1,B+1);
	f[0][0][0][0]=f[1][0][0][0]=1;
	for(int i=1;i<=n;i++) {
		for(int j=1;j<=m;j++) {
			for(int k=1;k<=K;k++) {
				f[(i&1)][j][k][0]=(f[(i&1)^1][j][k][1]+f[(i&1)^1][j][k][0])%mod;
				if(A[i]==B[j]) f[(i&1)][j][k][1]=(f[(i&1)^1][j-1][k-1][1]+(f[(i&1)^1][j-1][k][1]+f[(i&1)^1][j-1][k-1][0])%mod)%mod;
				else f[(i&1)][j][k][1]=0; 	
			}
		}
	}
	printf("%d\n",(f[n&1][m][K][0]+f[n&1][m][K][1])%mod);  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值