混合背包,

Lavrenty, a baker, is going to make several buns with stuffings and sell them.

Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.

Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.

Find the maximum number of tugriks Lavrenty can earn.

Input

The first line contains 4 integers nmc0 and d0 (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10, 1 ≤ c0, d0 ≤ 100). Each of the following m lines contains 4 integers. The i-th line contains numbers aibici and di (1 ≤ ai, bi, ci, di ≤ 100).

Output

Print the only number — the maximum number of tugriks Lavrenty can earn.

Examples

Input

10 2 2 1
7 3 2 100
12 3 1 10

Output

241

Input

100 1 25 50
15 5 20 10

Output

200

题意:
题意:给出一些n克面,以及m种馅儿,每种馅儿做面包需要的面的克数和馅儿的克数以及馅儿的总克数,面也可以单独做面包,然后每一种面包都有价格,求做的面包的总价格最高?

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int main()
{
	int M,N,w[300],c[300],s[300],f[100000]={0};
	int i,j,k;
	cin>>M>>N;
    N+=1;
	/*for(i=1;i<=N;i++)
		scanf("%d %d %d",&w[i],&c[i],&s[i]);
	for(i=1;i<=N;i++)
	{
		if(s[i]==0)//完全背包问题
		{
			for(j=w[i];j<=M;j++)
				f[j]=max(f[j],f[j-w[i]]+c[i]);
		}
		else//0/1背包问题和多重背包问题
		{
			for(j=M;j>=0;j--)
			{
				for(k=1;k<=s[i];k++)
				{
					if(j-k*w[i]<0) break;
					else
					f[j]=max(f[j],f[j-k*w[i]]+k*c[i]);
				}
			}
		}
	}
	printf("%d\n",f[M]);
	return 0;*/
	cin>>w[1]>>c[1];
	s[1]=-1;
	int a,b,C,d;
	for(int i=2;i<=N;i++)
    {
        cin>>a>>b>>C>>d;

        w[i]=C;
        c[i]=d;
        s[i]=a/b;
    }
	for(i=1;i<=N;i++)
	{
		if(s[i]==-1)//完全背包问题
		{
			for(j=w[i];j<=M;j++)
				f[j]=max(f[j],f[j-w[i]]+c[i]);
		}
		else//0/1背包问题和多重背包问题
		{
			for(j=M;j>=0;j--)
			{
				for(k=1;k<=s[i];k++)
				{
					if(j-k*w[i]<0) break;
					else
					f[j]=max(f[j],f[j-k*w[i]]+k*c[i]);
				}
			}
		}
	}
	printf("%d\n",f[M]);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值