Lavrenty, a baker, is going to make several buns with stuffings and sell them.
Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.
Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.
Find the maximum number of tugriks Lavrenty can earn.
Input
The first line contains 4 integers n, m, c0 and d0 (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10, 1 ≤ c0, d0 ≤ 100). Each of the following m lines contains 4 integers. The i-th line contains numbers ai, bi, ci and di (1 ≤ ai, bi, ci, di ≤ 100).
Output
Print the only number — the maximum number of tugriks Lavrenty can earn.
Examples
Input
10 2 2 1 7 3 2 100 12 3 1 10
Output
241
Input
100 1 25 50 15 5 20 10
Output
200
题意:
题意:给出一些n克面,以及m种馅儿,每种馅儿做面包需要的面的克数和馅儿的克数以及馅儿的总克数,面也可以单独做面包,然后每一种面包都有价格,求做的面包的总价格最高?
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int main()
{
int M,N,w[300],c[300],s[300],f[100000]={0};
int i,j,k;
cin>>M>>N;
N+=1;
/*for(i=1;i<=N;i++)
scanf("%d %d %d",&w[i],&c[i],&s[i]);
for(i=1;i<=N;i++)
{
if(s[i]==0)//完全背包问题
{
for(j=w[i];j<=M;j++)
f[j]=max(f[j],f[j-w[i]]+c[i]);
}
else//0/1背包问题和多重背包问题
{
for(j=M;j>=0;j--)
{
for(k=1;k<=s[i];k++)
{
if(j-k*w[i]<0) break;
else
f[j]=max(f[j],f[j-k*w[i]]+k*c[i]);
}
}
}
}
printf("%d\n",f[M]);
return 0;*/
cin>>w[1]>>c[1];
s[1]=-1;
int a,b,C,d;
for(int i=2;i<=N;i++)
{
cin>>a>>b>>C>>d;
w[i]=C;
c[i]=d;
s[i]=a/b;
}
for(i=1;i<=N;i++)
{
if(s[i]==-1)//完全背包问题
{
for(j=w[i];j<=M;j++)
f[j]=max(f[j],f[j-w[i]]+c[i]);
}
else//0/1背包问题和多重背包问题
{
for(j=M;j>=0;j--)
{
for(k=1;k<=s[i];k++)
{
if(j-k*w[i]<0) break;
else
f[j]=max(f[j],f[j-k*w[i]]+k*c[i]);
}
}
}
}
printf("%d\n",f[M]);
}