
深度学习
z海清
只要思想不滑坡,方法总比困难多
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
xml_record错误:TypeError: None has type NoneType, but expected one of: int, long
首先检查train_record.csv和test_record.csv中是否出现了标签错误! 再检查训练集和测试集中图片和xml是一一对应! 如果都没问题,那肯定能转换成功的! 在xml生成record的脚本中,第25行,该函数针对除“标签”以外的任何内容均返回None,您可能希望将其更改为所需的类,然后如果您有1个以上的类,则可以用elif添加其他类。 该函数永远不要返回None...原创 2019-12-25 13:55:33 · 625 阅读 · 0 评论 -
Constant,Placeholder,Variables
计算图 TensorFlow使用一种称为延迟执行的东西。这意味着,首先要构建计算图,然后将所有元素放在一起,然后运行它。 该图在张量上作为输入和输出起作用。一些节点不接受任何输入,因为它们本身就是张量。让我们构建一个简单的示例,添加两个数字:2和5。图形如下所示(通过TensorBoard获得): 数字的值存储在占位符中。隐式类型是float,但是您可以使用dtype参数指定它:...原创 2019-12-08 21:38:33 · 244 阅读 · 0 评论 -
TensorFlow tf.contrib用于MNIST数据集
TensorFlowtf.contrib.learn是用于机器学习过程的高级API。它提供了各种Estimator代表预定义模型的。一些示例是: LinearClassifier--线性分类模型 KMeansClustering-K-Means聚类的估计量。 DNNClassifier--用于深度神经网络模型的分类器 DNNRegressor--深度神经网络模型。 如果可用的估算器列表...原创 2019-12-08 21:04:48 · 364 阅读 · 0 评论 -
Tensorflow: MNIST 专家级
训练过程: 如MNIST初学者教程中所述,我们的深度学习过程由以下几个步骤定义: 读取训练/测试数据集(MNIST) 定义神经网络架构 定义损失函数和优化方法 根据数据批次训练神经网络 评估测试数据的性能 在这里,我们从清单中总结了几乎每个步骤,并将严格地在神经网络体系结构设计部分上进行工作。 整个过程在training.py文件中定义,并将导入到特定文件中,包括用于不同神经网络体系...原创 2019-12-08 20:16:57 · 230 阅读 · 0 评论 -
手写数字识别教程
在以下的教程,你将学习以下过程: 训练数据 我们的任务是使用TensorFlow构建分类神经网络。首先,我们需要建立体系结构,训练网络(使用训练集),然后在测试集上评估结果。 下图显示了分类过程和神经网络的各层: 为了向网络提供训练数据,我们需要展平数字图像。根据(训练或测试)阶段,将通过分类器推送不同的示例。训练过程将基于标签,同时将它们与当前预测进行比较。这...原创 2019-12-08 17:46:45 · 2461 阅读 · 0 评论