论文翻译
qq_40874603
这个作者很懒,什么都没留下…
展开
-
Conditional Convolutions for Instance Segmentation
用于实例分割的条件卷积摘要提出了有效的实例分割架构,叫做CondInst。目前表现优秀的实例分割方法如Mask-RCNN依赖于ROI操作来获得最终的实例mask。相反,我们从一个新的视角解决实例分割。取代使用实例化的RoIs作为固定权重网络的输入,我们使用一个动态的实例感知网络,基于实例。CondInst有两个优势:1)使用全卷积网络解决实例分割问题,无需RoI裁剪和特征对齐。2)由于动态生成的条件卷积大幅提升了容量,mask head可以变得十分紧凑(如3三个卷积层,每个只有8个通道),导致显著更快的翻译 2020-08-28 21:29:39 · 1085 阅读 · 0 评论 -
CRAFT阅读笔记
Character Region Awareness for Text Detection字符区域注意的文本检测介绍:可选择的,字符级的关注对于解决弯曲文本有许多好处,通过一个自底向上的方式连接字符。大部分文本数据集没有提供字符级的注释,而获取字符级的注释代价十分昂贵。本文中提出了一个新颖的文本检测其定位单个字符区域,并将检测的字符连接成一个文本实例。卷积神经网络 产生 字符区域得分 和关联得分。字符区域得分用于定位独立字符,关联的分将字符组成一个实例。提出了一个弱监督框架,在现有的单词级的数据原创 2020-07-23 22:05:24 · 961 阅读 · 0 评论 -
EAST论文总结
架构简单,专注于loss函数和网络架构的设计。在ICDAR15, COCO-Text,MSRA-TD500上进行实验,表明体术的方法在准确率和效率上都最为先进,在ICDAR15数据集上,算法实现了F-score 0.7820和13.2的fps在720p的分辨率下。文本检测任务的核心是设计区分文本和背景的特征。传统方法手工提取特征,深度学习方法直接从训练数据中学习有效的特征。现有方法大多有许多阶段,准确率和效率不佳。本文中,提出一个快且准确的场景文本检测通道,仅由两个通道构成。通道利用全卷积网络FCN模型原创 2020-07-22 15:49:40 · 252 阅读 · 0 评论 -
论文翻译:自然场景文本检测与识别综述
论文翻译:自然场景文本检测与识别综述欢迎使用Markdown编辑器引言介绍功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学翻译 2020-07-22 14:02:23 · 2088 阅读 · 0 评论