解决could not load dynamic liabrary 'cudart64_100.dll'错误与tensorflow-gpu的版本更新

问题:
开始安装的tensorflow-gpu版本是2.0.0的,运行的时候报错could not load dynamic liabrary ‘cudart64_100.dll’
,原因是我的nvidia的驱动更新后是cuda10.1的,而安装的2.0.0版本的tensorflow配套安装的cudatookit,cudnn都是与cuda10.0匹配的,因为从一开始我就应该安装与我cuda10.1相匹配的2.1.0的tenseorflow-gpu
解决方案:
记录踩的坑,开始我自然想到去更新tenseorflow-gpu,用的命令是pip install --upgade tensorflow 结果报错Could not install packages due to an EnvironmentError,根据提示在命令中添加了–user,结果装是装了,但有警告,是装到了别的地方,C:\Users\Admin1\AppData\Roaming\Python\Python37\Scripts,不在用anaconda创建的虚拟环境里,所以报不在环境变量里,然后我又去添加环境变量,这样的话,显然虚拟环境中还存在着2.0.0的版本,在python环境下导入tensorflow呢,又报了一大串错误,我意识到这样装肯定是有问题的,他根本就没在我创建的虚拟环境下嘛
我先是把这个装在别的地方的2.1.0版本给卸了,接着还想把2.0.0的版本给卸了,以便装2.1.0的,但是心里不乐意,卸了重装不是太low了吗,我还用原来安装的命令conda install tensorflow-gpu==2.1.0,我想,开发者设计此命令时难道不先检测环境中有无其他版本,不能在安装过程中更新吗,事实上如我所料
在这里插入图片描述
2.0.0版本的tensorflow -gpu和对应的cudatookit,cudnn均被更新,done!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值