黑科技——三元环计数

如果给你一个无向图,问其中有多少个三元环

暴力?一个菊花图就没了

我们考虑如果一条边(u,v)由度数大的向度数小的连边。如果度数一样,那么编号小的向编号大的连边(这个编号大的向小的连也可以)。

这时候整张图是个DAG,所以只要枚举每个点,给每个点的出点打上标记,再枚举出点的出点,如果有标记就计数,显然每个三元环只会被算到一次。

我们考虑一下时间复杂度:

\sum_{i=1}^{m}degout(u_{i})

乍一看时间复杂度不太对劲,然而,由于我们每次是由度数大的向度数小的连边,所以:

1.如果degout(u)>\sqrt{m},这样的u只会被算根号次,因为只有度数大于等于根号m的点才能连向他,而这样的点最多只有根号m个

2.degout(u)<=\sqrt{m}

综上时间复杂度为m\sqrt{m}

例题:

hdu6184

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2e5+10;
struct node{
	int u,to,w;
};
node edge[N<<1];
int head[N],s[N],t[N],x[N],y[N],deg[N];
int k,n,m; 
ll ans,la[N];
void add(int x,int y,int z){
	edge[k].u=y; edge[k].to=head[x]; edge[k].w=z; head[x]=k++;
}
int main(){
	while (~scanf("%d%d",&n,&m)) {
		for (int i=1;i<=n;i++) head[i]=-1; k=0;
		ans=0;
		for (int i=1;i<=n;i++) deg[i]=0;
		for (int i=1;i<=m;i++) {
		scanf("%d%d",&x[i],&y[i]); deg[x[i]]++; deg[y[i]]++; 
		la[i]=0;
		}
		for (int i=1;i<=n;i++) s[i]=0,t[i]=0;
		for (int i=1;i<=m;i++) if (deg[x[i]]>deg[y[i]]||((deg[x[i]]==deg[y[i]])&&x[i]<y[i]))
        	add(x[i],y[i],i); else add(y[i],x[i],i);
		for (int i=1;i<=n;i++) {
			for (int j=head[i];j!=-1;j=edge[j].to){
				int u=edge[j].u; s[u]=i; t[u]=edge[j].w;
			}
			for (int j=head[i];j!=-1;j=edge[j].to){
				int u=edge[j].u;
				for (int p=head[u];p!=-1;p=edge[p].to){
					int v=edge[p].u; 
					if (s[v]==i) {
						ans+=la[edge[j].w]+la[edge[p].w]+la[t[v]];
						la[edge[j].w]++; la[edge[p].w]++; la[t[v]]++;
					}
				}
			}
		}
		printf("%lld\n",ans);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值