940. 不同的子序列 II「动态规划」

思路

参考了灵佬的题解

针对这种子序列问题,往往都是对每个字符进行「选和不选」的操作,因此可以利用「动态规划」来进行求解。

先做如下考虑:

dp[i]表示以s[i]为结尾的子序列的数量,n为字符串s的长度。需要考虑以下两个问题:

  1. dp[0], dp[1], ..., dp[i-1]都确定下来后,如何确定dp[i]的数量呢?即如何进行状态转移?
  2. 返回的答案并不是简单的dp[n-1],因为dp[n-1]表示的含义是以字符s[n-1]为结尾的子序列的数量,但是子序列可以不以s[n-1]为结尾。因此,返回值应该如何计算?

问题一分析

  1. 假设s[0], s[1], ..., s[i-1]都不同。

    那么将s[i]自身作为一个子序列,并将s[i]加到以s[0], s[1], ..., s[i-1]为结尾的子序列后,构成新的一系列新的子序列,此时有:

d p [ i ] = 1 + ∑ j = 0 i − 1 d p [ j ] (1) dp[i] = 1 + \sum_{j=0}^{i-1}{dp[j]} \tag{1} dp[i]=1+j=0i1dp[j](1)

​ 其中1表示以s[i]单独作为子序列的情况。

这里s[i]是可以与s[0...i-1]中的某一个字符相同的,dp[i]计算方式都一样,但是计算最终答案时有所区分,见后文分析问题2的部分。

  1. 假设s[0], s[1], ..., s[i-1]中存在 s [ j 0 ] = s [ j 1 ] = . . . = s [ j k ] s[j_0]=s[j_1]=...=s[j_k] s[j0]=s[j1]=...=s[jk],且 j 0 < j 1 < . . . < j k < i j_0 < j_1 < ... < j_k < i j0<j1<...<jk<i,那么dp[i]的计算方式有所差别。

    首先需要理解: d p [ j 1 ] dp[j_1] dp[j1]所代表的子序列集合一定是包含 d p [ j 0 ] dp[j_0] dp[j0]所代表的子序列集合的。同理 d p [ j k ] dp[j_k] dp[jk]所代表的子序列集合一定是包含 d p [ j k − 1 ] dp[j_{k-1}] dp[jk1]所代表的子序列集合的。(区间范围更大,得到的子序列更全)

    因此当加入s[i]后,对于一系列相同的字符,只需要统计最后一个字符对应的子序列数量 d p [ j k ] dp[j_k] dp[jk]即可,并累加区间[0,i-1]中不同字符结尾的数量并加1,即可得到dp[i]。由于题目中均为小写字母,为了方便计算最后一个字符对应的子序列数量 d p [ j k ] dp[j_k] dp[jk],可以利用一个新的数组last表示以'a'-'z'(对应下标0-25)结尾的子序列数量。

    此时,dp[i]的计算公式为:

d p [ i ] = 1 + ∑ j = 0 25 l a s t [ j ] (2) dp[i] = 1 + \sum_{j=0}^{25}last[j] \tag{2} dp[i]=1+j=025last[j](2)

  1. 由分析2可以发现,对于1中的公式,也可以通过公式(2)来计算。因此每次迭代字符s[i]时更新last[s[i] - 'a']即可。

    同时也可以发现,last的含义与dp的含义其实是相同的,有dp[i] = last[s[i] - 'a']。因此可以抛弃dp数组吗,只利用last数组记录。last数组的更新公式为:

l a s t [ s [ i ] − ′ a ′ ] = 1 + ∑ j = 0 25 l a s t [ j ] (3) last[s[i]-'a'] = 1 + \sum_{j=0}^{25}last[j] \tag{3} last[s[i]a]=1+j=025last[j](3)

问题二分析

现在dp[0...n-1]已经全部计算出来了,但是本题的答案显然不是dp[n-1]

但是由于我们计算出了last数组,通过sum(last)其实就可以得到最终的答案。


代码实现

class Solution {
public:
    int MOD = 1000000007;
    int distinctSubseqII(string s) {
        vector<int> vec(26);
        auto last = new long long[26]{0};
        for (const auto &c : s){
            last[c-'a']=accumulate(last , last + 26,1LL)%MOD;
        }

        return accumulate(last , last + 26, 0LL)%MOD;
    }
};

从上述可以发现,每次只变了last[s[i]-'a'],同时引起sum(last)的变化,因此可以利用一个变量total记录每次sum(last)的值,从而免去每次重新求和的过程。代码如下:

class Solution {
public:
    int MOD = 1000000007;
    int distinctSubseqII(string s) {
        long long total = 0, other = 0;
        auto last = new long long[26]{0};
        for (const auto &c : s){
            other = (total - last[c-'a'] + MOD) % MOD;  // 以防负数取模
            last[c-'a'] = (total + 1) % MOD;
            total = (other + last[c-'a']) % MOD;
        }
        return total;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值