K近邻算法基础知识

k \boldsymbol{k} k-近邻算法

目录

1. 概念

     k \boldsymbol{k} k-近邻算法采用测量不同特征之间的距离方法进行分类。没有显式的训练过程,在训练阶段仅仅是把样本保存起来,在收到测试样本以后再进行处理。
     k \boldsymbol{k} k-近邻算法的特殊情况是 k \boldsymbol{k} k=1,称为最近邻算法

  • 优点:
        精度高、对异常值不敏感、无数据输入假定。

  • 缺点
        1. 计算复杂度高、空间复杂度高。 k \boldsymbol{k} k-近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。必须对数据集中的每个数据计算距离值,非常耗时。
        2. 无法给出任何数据的基础结构信息,因此无法知道平均实例样本和典型实例具有什么特征。

  • 适用数据范围
        数值型(需要进行计算距离)和标称型。
        数值型:数值型目标变量则可以从无限的数值集合中取值,如1,2等 (数值型目标变量主要用于回归分析)
        标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)

算法步骤

  1. 计算已知类别数据集中的点与当前点之间的距离
  2. 按照距离递增次序排序
  3. 选取与当前点距离最小的 k \boldsymbol{k} k个点;
  4. 确定前 k \boldsymbol{k} k个点所在类别的出现频率
  5. 返回前 k \boldsymbol{k} k个点所出现频率最高的类别作为当前点的预测分类

常用的计算距离

距离公式:
L p ( x i , x j ) = ( ∑ i = l n ∣ x i l − x j l ∣ p ) 1 / p L_{p}(x_{i},x_{j})=(\sum_{i=l}^{n}|x_{i}^{l}-x_{j}^{l}|^{p})^{1/p} Lp(xi,xj)=(i=lnxilxjlp)1/p

公式优点缺点
欧式距离p=2精度高、对异常值不敏感、无数据输入假定计算复杂度高、空间复杂度高
曼哈顿距离p=1
切比雪夫距离p=∞
马氏距离
汉明距离
皮尔逊系数
信息熵

k值的选取

    KNN采用投票的方法(即少数服从多数),在选取k的时候太大(一般不会大于20的整数加粗样式),选取奇数。
  1. K值很小:容易受异常点影响
  2. k值很大:容易受数量的波动
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值