时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32M,其他语言64M
热度指数:458676
本题知识点: 链表 树
题目描述
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。
代码
/* function TreeNode(x) {
this.val = x;
this.left = null;
this.right = null;
} */
function Convert(pRootOfTree)
{
if(!pRootOfTree) {return null;}
if(!pRootOfTree.left && !pRootOfTree.right) {return pRootOfTree;}
//构建左子树的双链表,left看做已经排好序的表头
let left = Convert(pRootOfTree.left);
//此时p为一个链表,不算做创造新结点
let p = left;
//找到左子树所构建链表的最右结点
while(p && p.right){
p = p.right;
}
//如果左链表存在,左链表的最右结点的右边结点即是原始头结点
if(left){
p.right = pRootOfTree;
pRootOfTree.left = p;
}
//构建右子树双链表,返回表头
let right = Convert(pRootOfTree.right);
//如果右链表存在,右链表的最左结点的左边结点即是原始头结点
if(right){
right.left = pRootOfTree;
pRootOfTree.right = right;
}
//如果left为空,表头为pRootOfTree,反之则表头为left
return left!=null ? left : pRootOfTree;
}
分析:
二叉查找树:它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。