CCF-CSP201609-4 交通规划(Dijkstra+优先队列)

题目链接

问题描述

试题编号:201609-4
试题名称:交通规划
时间限制:1.0s
内存限制:256.0MB
问题描述:

问题描述

  G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统。
  建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改造成高速铁路。现在,请你为G国国王提供一个方案,将现有的一部分铁路改造成高速铁路,使得任何两个城市间都可以通过高速铁路到达,而且从所有城市乘坐高速铁路到首都的最短路程和原来一样长。请你告诉G国国王在这些条件下最少要改造多长的铁路。

输入格式

  输入的第一行包含两个整数nm,分别表示G国城市的数量和城市间铁路的数量。所有的城市由1到n编号,首都为1号。
  接下来m行,每行三个整数abc,表示城市a和城市b之间有一条长度为c的双向铁路。这条铁路不会经过ab以外的城市。

输出格式

  输出一行,表示在满足条件的情况下最少要改造的铁路长度。

样例输入

4 5
1 2 4
1 3 5
2 3 2
2 4 3
3 4 2

样例输出

11

评测用例规模与约定

  对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 50;
  对于50%的评测用例,1 ≤ n ≤ 100,1 ≤ m ≤ 5000;
  对于80%的评测用例,1 ≤ n ≤ 1000,1 ≤ m ≤ 50000;
  对于100%的评测用例,1 ≤ n ≤ 10000,1 ≤ m ≤ 100000,1 ≤ ab ≤ n,1 ≤ c ≤ 1000。输入保证每个城市都可以通过铁路达到首都。

 

 

由“使得任何两个城市间都可以通过高速铁路到达,而且从所有城市乘坐高速铁路到首都的最短路程和原来一样长”知要求的是最短路径;由“在满足条件的情况下最少要改造的铁路长度”知要求的是最短路径条件下的最小花费

用Dijkstra求解时需要增加一个c数组记录连通一个新城市需要增加的边的权重。当有多条路径满足最短路径时需要求出最小花费,更新c[i]即可。

AC代码:

#include<iostream>
#include<sstream>
#include<algorithm>
#include<string>
#include<cstring>
#include<iomanip>
#include<vector>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#define P pair<int,int>//第一个数据保存d[i],第二个数据保存i 
#define INF 1<<30 
using namespace std;
int n,m;
int d[10010];//最小距离 
int c[10010];//c[i]表示连通通城市i需要增加的权重
bool visited[10010];//标记数组 
vector< vector<P> > G(10010);//邻接表 
priority_queue< P,vector<P>,greater<P> > que;//小根堆 ,按第一个数据即最小距离升序排列 
void Dijkstra(int i)
{
	fill(d+1,d+n+1,INF);
	d[i]=0;c[i]=0;
	que.push(make_pair(d[i],i));
	
	while(que.size())
	{
		P p=que.top();que.pop();
		int u=p.second;
		if(visited[u]) continue;
		visited[u]=true;
		for(int j=0;j<G[u].size();j++)
		{
			int v=G[u][j].second;
			int l=G[u][j].first;
			if(visited[v]) continue;
			
			if(d[u]+l<d[v]) 
			{
				d[v]=d[u]+l;
				c[v]=l;
				que.push(make_pair(d[v],v));
			}
			else if(d[u]+l==d[v])//有多条路径满足最短路径,取最小值 
			{
				c[v]=min(c[v],l);
			}
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		int a,b,c;
		cin>>a>>b>>c;
		G[a].push_back(make_pair(c,b));
		G[b].push_back(make_pair(c,a));
	}
	memset(visited,0,sizeof(visited));
	memset(d,0,sizeof(d));
	memset(c,0,sizeof(c));
	Dijkstra(1);
	
	int ans=0;
	for(int i=1;i<=n;i++)//求出最小花费 
	ans+=c[i];
	cout<<ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值