问题描述
试题编号: | 201609-4 |
试题名称: | 交通规划 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: | 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统。 输入格式 输入的第一行包含两个整数n, m,分别表示G国城市的数量和城市间铁路的数量。所有的城市由1到n编号,首都为1号。 输出格式 输出一行,表示在满足条件的情况下最少要改造的铁路长度。 样例输入 4 5 样例输出 11 评测用例规模与约定 对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 50; |
由“使得任何两个城市间都可以通过高速铁路到达,而且从所有城市乘坐高速铁路到首都的最短路程和原来一样长”知要求的是最短路径;由“在满足条件的情况下最少要改造的铁路长度”知要求的是最短路径条件下的最小花费。
用Dijkstra求解时需要增加一个c数组记录连通一个新城市需要增加的边的权重。当有多条路径满足最短路径时需要求出最小花费,更新c[i]即可。
AC代码:
#include<iostream>
#include<sstream>
#include<algorithm>
#include<string>
#include<cstring>
#include<iomanip>
#include<vector>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#define P pair<int,int>//第一个数据保存d[i],第二个数据保存i
#define INF 1<<30
using namespace std;
int n,m;
int d[10010];//最小距离
int c[10010];//c[i]表示连通通城市i需要增加的权重
bool visited[10010];//标记数组
vector< vector<P> > G(10010);//邻接表
priority_queue< P,vector<P>,greater<P> > que;//小根堆 ,按第一个数据即最小距离升序排列
void Dijkstra(int i)
{
fill(d+1,d+n+1,INF);
d[i]=0;c[i]=0;
que.push(make_pair(d[i],i));
while(que.size())
{
P p=que.top();que.pop();
int u=p.second;
if(visited[u]) continue;
visited[u]=true;
for(int j=0;j<G[u].size();j++)
{
int v=G[u][j].second;
int l=G[u][j].first;
if(visited[v]) continue;
if(d[u]+l<d[v])
{
d[v]=d[u]+l;
c[v]=l;
que.push(make_pair(d[v],v));
}
else if(d[u]+l==d[v])//有多条路径满足最短路径,取最小值
{
c[v]=min(c[v],l);
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
G[a].push_back(make_pair(c,b));
G[b].push_back(make_pair(c,a));
}
memset(visited,0,sizeof(visited));
memset(d,0,sizeof(d));
memset(c,0,sizeof(c));
Dijkstra(1);
int ans=0;
for(int i=1;i<=n;i++)//求出最小花费
ans+=c[i];
cout<<ans;
}