递归的概念
直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。
在计算机算法设计与分析中,使用递归技术往往使函数的定义和算法的描述简洁且易于理解。
递归需要有边界条件、递归前进段和递归返回段。
当边界条件不满足时,递归前进;
当边界条件满足时,递归返回。
注意:在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口,否则将无限进行下去(死锁)。
递归的缺点:
递归算法解题的运行效率较低。
在递归调用过程中,系统为每一层的返回点、局部变量等开辟了堆栈来存储。递归次数过多容易造成堆栈溢出等。
汉诺塔问题。
void move(char from ,char to) {
cout<<“Move “<<from<<“to”<<to<<endl;
}
void hanoi(int n, char first, char second, char third) {
if(n==1)
move(first,third);
else{
hanoi(n-1,first,third,second);
move(first,third);
hanoi(n-1,second,first,third);
}
}
int main(){
int m;
cout<<“the number of diskes:";
cin>>m;
cout<<“move “<<m<<“ diskes:\n”;
hanoi(m,‘A’,‘B’,‘C’);
}
void hanoi(int n, char first, char second, char third)
{
if (n <= 1)
move(first,third);
else
{
hanoi(n-1,first,third,second);
R1 move(first,third);
hanoi(n-1,second,first,third);
R3}
}
nt main()
{
hanoi(3,’A’,’B’,’C’);
R0 return 0;
}
void hanoi(int n, char first, char second, char third)
{
if (n <= 1)
move(first,third);
else
{
hanoi(n-1,first,third,second);
R1: move(one,three); hanoi(n-1,second,first,third);
R3:}
}
int main()
{
hanoi(n,A,B,C);
R0: return ;
}
设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列(n!种)。
设R={r1,r2,…,rn}是要进行排列的n个元素,
Ri=R-{ri}。
集合X中元素的全排列记为perm(X)。
(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。
R的全排列可归纳定义如下:
当n=1时,
perm®=®,其中r是集合R中唯一的元素;
当n>1时,perm®由
(r1) perm(R1)
(r2) perm(R2)
…
(rn) perm(Rn)构成。