Helvetic Coding Contest 2019.A2(位异或+最大公因数)

博客介绍了Helvetic Coding Contest 2019.A2问题,涉及位异或操作和最大公因数(GCD)在解决特定条件下的字符串匹配问题。当GCD(n, k) = 1时,字符串满足特定异或关系;否则,需要字符串的特定子集异或和为0。解决方案包括遍历n的所有因数并检查它们与k的GCD,以找出满足条件的k值。" 88680015,7401031,Laravel 5.6 实战:SMTP驱动邮件发送指南,"['Laravel', '邮件发送']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
题意:给你一个n和长度为n的“01”串y,问在0<=k<n的范围,有多少个k满足情况,其中k满足情况为:任意一个长度为n的字符串(自己确定)和自身右移k个单位的串,异或是否可以等于y,如果可以则k满足条件为所求

思路:(注意:每个位置的异或,如a1^a3,因为都是01之间的异或,所以全部转换成了(a1+a3)%2,里面的所有实数结果也都对2取模。方便理解和代码书写)
通过分析得知,当gcd(n,k)=1时,如n=4,k=3有:
a0+a3=y3;
a1+a0=y0;
a2+a1=y1;
a3+a2=y2;
如果y1+y2=1,则a1+a3=1,所以y3+y0=1,所以y1+y2+y3+y0=0;
如果y1+y2=0,则a1+a3=0,所以y3+y0=0,所以y1+y2+y3+y0=0;
即y0、y1、y2、y3中必须满足偶数个的0对和1对(即:y1+y2+y3+y0=0);同理所有gcd(n,k)=1的情况都是如此;

当gcd(n,k)!=1时,如n=6,k=2有:
a0+a2=y2;
a2+a4=y4;
a4+a0=y0;
如果a0=0时,
设a2=1,那么y2=1,且y4+y0=1,所以y2+y4+y0=0;
设a2=0,那么y2=0,且y4+y0=0,所以y2+y4+y0=0;
同理a0=1时,y2+y4+y0=0,所以要位移后满足如条件则有y2+y4+y0=0
同理对于a1,a3,a5有,y1+y3+y5=0;
则若y同时满足y2+y4+y0=0且y1+y3+y5=0,则当k=2时满足情况。
gcd(n,k)!=1时同理,

最后我们还发现,当gcd(n,k1)=gcd(n,k2)时,其实他们列出的关于y0~yn的方程组都是一样的。因此如果1到n中有两数对于n,gcd相同情况,只要有一个满足,则其他的都满足。所以我们只需要对n的所有因数进行处理判断其是否可行,再判断每个数,如果这个数和n的gcd满足条件,那么他本身也满足。

#include <bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
#define ll long long
#define me(a,b) memset(a,b,sizeof(a))
#define zdebug(a) for(int i=0;i<n;i++) cout<<a[i]<<" ";cout<<endl;
#define zdebug1(a) for(int i=1;i<=n;i++) cout<<a[i]<<" ";cout<<endl;
const int inf=0x3f3f3f3f;
const int maxc=200010;
const int mod=1000000007;
char a[maxc];
int v[maxc];//记录满足的K
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值