最小生成树算法总结

最小生成树—>无向图

常见的用法
1)稠密图 —> Prim算法朴素版
2)稀疏图 —> Kruskal算法

二分图:
1)染色法 —>判断是否是二分图 O(n+m)
2)匈牙利算法 —>求最大匹配 O(mn) 实际运用效果非常好

3)最大流问题
大纲:
mark

朴素版Prim算法 (核心:算法流程)

1)初始化距离 dist[i]<–0x3f

算法流程:
mark

最小生成树解决的问题:
1)最小连通距离
2)相当于去除垄余的边,每个点保留一条最短边

最小生成树不会有环:边权正负均可以

注意:先累加,再更新 (如果有自环,更新之后,自己会变小)

int prim()
{
    memset(dist, 0x3f, sizeof dist);
    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        //寻找不在队中最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;
        if (i) res += dist[t];
        st[t] = true;
        //更新其他点
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

Kruskal算法: 效果非常好,很快

算法描述:
mark

并查集: O(1)
1)在a,b之间加一条边
2)判断是否连通

特点:只需要开个结构体存储边就可以了

struct Edge{
    int a,b,w;
    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}Edges[M];

int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(Edges,Edges+m);
    for(int i=1;i<=n;i++) p[i]=i;

    int res=0,cnt=0;
    for(int i=0;i<m;i++)
    {
        int a=Edges[i].a,b=Edges[i].b,w=Edges[i].w;
        if(find(a)!=find(b))
        {
            p[find(a)]=find(b);
            res+=w;
            cnt++;
        }
    }
    if(cnt<n-1) return INF;
    else
    return res;
}

       res+=w;
            cnt++;
        }
    }
    if(cnt<n-1) return INF;
    else
    return res;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值