灰度共生矩阵及相关特征值的计算——opencv

#include<iostream>
#include<opencv2/highgui.hpp>
#include<opencv2/core.hpp>
#include<opencv2/imgcodecs.hpp>
#include<opencv2/opencv.hpp>
using namespace std;
using namespace cv;

const int gray_level = 16;

void getglcm_horison(Mat& input, Mat& dst)//0度灰度共生矩阵
{
    Mat src=input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level=0;
    for (int j = 0; j < height; j++)//寻找像素灰度最大值
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;//像素灰度最大值加1即为该矩阵所拥有的灰度级数
    if (max_gray_level > 16)//若灰度级数大于16,则将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
    {
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width - 1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata[j + 1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else//若灰度级数小于16,则生成相应的灰度共生矩阵
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width - 1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata[j + 1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_vertical(Mat& input, Mat& dst)//90度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height-1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i+1);
            for (int j = 0; j < width ; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height-1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_45(Mat& input, Mat& dst)//45度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width-1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j+1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width-1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j+1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_135(Mat& input, Mat& dst)//135度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 1; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j-1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 1; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j-1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}

void feature_computer(Mat&src, double& Asm, double& Eng, double& Con, double& Idm)//计算特征值
{
    int height = src.rows;
    int width = src.cols;
    int total = 0;
    for (int i = 0; i < height; i++)
    {
        int*srcdata = src.ptr<int>(i);
        for (int j = 0; j < width; j++)
        {
            total += srcdata[j];//求图像所有像素的灰度值的和
        }
    }

    Mat copy;
    copy.create(height, width, CV_64FC1);
    for (int i = 0; i < height; i++)
    {
        int*srcdata = src.ptr<int>(i);
        double*copydata = copy.ptr<double>(i);
        for (int j = 0; j < width; j++)
        {
            copydata[j]=(double)srcdata[j]/(double)total;//图像每一个像素的的值除以像素总和
        }
    }


    for (int i = 0; i < height; i++)
    {
        double*srcdata = copy.ptr<double>(i);
        for (int j = 0; j < width; j++)
        {
            Asm += srcdata[j] * srcdata[j];//能量
            if (srcdata[j]>0)
                Eng -= srcdata[j] * log(srcdata[j]);//熵             
            Con += (double)(i - j)*(double)(i - j)*srcdata[j];//对比度
            Idm += srcdata[j] / (1 + (double)(i - j)*(double)(i - j));//逆差矩
        }
    }
}

int main()
{
    Mat dst_horison, dst_vertical, dst_45, dst_135;

    Mat src = imread("C:\\Users\\aoe\\Desktop\\Visual C+\\Visual C+\\chapter08\\pic\\healthy\\201.bmp");
    if (src.empty())
    {
        return -1;
    }
    Mat src_gray;
    //src.create(src.size(), CV_8UC1);
    //src_gray = Scalar::all(0);
    cvtColor(src, src_gray, COLOR_BGR2GRAY);

    //src =( Mat_<int>(6, 6) << 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2, 2, 3, 0, 1, 2, 3, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2 );
    //src = (Mat_<int>(4, 4) << 1, 17, 0, 3,3,2,20,5,26,50,1,2,81,9,25,1);
    getglcm_horison(src_gray, dst_horison);
    getglcm_vertical(src_gray, dst_vertical);
    getglcm_45(src_gray, dst_45);
    getglcm_135(src_gray, dst_135);

    double eng_horison=0, con_horison=0, idm_horison=0, asm_horison=0;
    feature_computer(dst_horison, asm_horison, eng_horison, con_horison, idm_horison);

    cout << "asm_horison:" << asm_horison << endl;
    cout << "eng_horison:" << eng_horison << endl;
    cout << "con_horison:" << con_horison << endl;
    cout << "idm_horison:" << idm_horison << endl;


/*  for (int i = 0; i < dst_horison.rows; i++)
    {
        int *data = dst_horison.ptr<int>(i);
        for (int j = 0; j < dst_horison.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }
    cout << endl;

    for (int i = 0; i < dst_vertical.rows; i++)
    {
        int *data = dst_vertical.ptr<int>(i);
        for (int j = 0; j < dst_vertical.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }
    cout << endl;

    for (int i = 0; i < dst_45.rows; i++)
    {
        int *data = dst_45.ptr<int>(i);
        for (int j = 0; j < dst_45.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }

    cout << endl;

    for (int i = 0; i < dst_135.rows; i++)
    {
        int *data = dst_135.ptr<int>(i);
        for (int j = 0; j < dst_135.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }*/
    system("pause");
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380

参考: 
灰度共生矩阵的定义与理解:http://www.cnblogs.com/xiangshancuizhu/archive/2011/07/24/2115266.html

opencv实现: 
http://blog.csdn.net/cxf7394373/article/details/6988229 
http://download.csdn.net/download/sxnzxz/3419181

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值