#include<iostream>
#include<opencv2/highgui.hpp>
#include<opencv2/core.hpp>
#include<opencv2/imgcodecs.hpp>
#include<opencv2/opencv.hpp>
using namespace std;
using namespace cv;
const int gray_level = 16;
void getglcm_horison(Mat& input, Mat& dst)//0度灰度共生矩阵
{
Mat src=input;
CV_Assert(1 == src.channels());
src.convertTo(src, CV_32S);
int height = src.rows;
int width = src.cols;
int max_gray_level=0;
for (int j = 0; j < height; j++)//寻找像素灰度最大值
{
int* srcdata = src.ptr<int>(j);
for (int i = 0; i < width; i++)
{
if (srcdata[i] > max_gray_level)
{
max_gray_level = srcdata[i];
}
}
}
max_gray_level++;//像素灰度最大值加1即为该矩阵所拥有的灰度级数
if (max_gray_level > 16)//若灰度级数大于16,则将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
{
for (int i = 0; i < height; i++)
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width; j++)
{
srcdata[j] = (int)srcdata[j] / gray_level;
}
}
dst.create(gray_level, gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height; i++)
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width - 1; j++)
{
int rows = srcdata[j];
int cols = srcdata[j + 1];
dst.ptr<int>(rows)[cols]++;
}
}
}
else//若灰度级数小于16,则生成相应的灰度共生矩阵
{
dst.create(max_gray_level, max_gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height; i++)
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width - 1; j++)
{
int rows = srcdata[j];
int cols = srcdata[j + 1];
dst.ptr<int>(rows)[cols]++;
}
}
}
}
void getglcm_vertical(Mat& input, Mat& dst)//90度灰度共生矩阵
{
Mat src = input;
CV_Assert(1 == src.channels());
src.convertTo(src, CV_32S);
int height = src.rows;
int width = src.cols;
int max_gray_level = 0;
for (int j = 0; j < height; j++)
{
int* srcdata = src.ptr<int>(j);
for (int i = 0; i < width; i++)
{
if (srcdata[i] > max_gray_level)
{
max_gray_level = srcdata[i];
}
}
}
max_gray_level++;
if (max_gray_level > 16)
{
for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width; j++)
{
srcdata[j] = (int)srcdata[j] / gray_level;
}
}
dst.create(gray_level, gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height-1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i+1);
for (int j = 0; j < width ; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j];
dst.ptr<int>(rows)[cols]++;
}
}
}
else
{
dst.create(max_gray_level, max_gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height-1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i + 1);
for (int j = 0; j < width; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j];
dst.ptr<int>(rows)[cols]++;
}
}
}
}
void getglcm_45(Mat& input, Mat& dst)//45度灰度共生矩阵
{
Mat src = input;
CV_Assert(1 == src.channels());
src.convertTo(src, CV_32S);
int height = src.rows;
int width = src.cols;
int max_gray_level = 0;
for (int j = 0; j < height; j++)
{
int* srcdata = src.ptr<int>(j);
for (int i = 0; i < width; i++)
{
if (srcdata[i] > max_gray_level)
{
max_gray_level = srcdata[i];
}
}
}
max_gray_level++;
if (max_gray_level > 16)
{
for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width; j++)
{
srcdata[j] = (int)srcdata[j] / gray_level;
}
}
dst.create(gray_level, gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height - 1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i + 1);
for (int j = 0; j < width-1; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j+1];
dst.ptr<int>(rows)[cols]++;
}
}
}
else
{
dst.create(max_gray_level, max_gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height - 1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i + 1);
for (int j = 0; j < width-1; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j+1];
dst.ptr<int>(rows)[cols]++;
}
}
}
}
void getglcm_135(Mat& input, Mat& dst)//135度灰度共生矩阵
{
Mat src = input;
CV_Assert(1 == src.channels());
src.convertTo(src, CV_32S);
int height = src.rows;
int width = src.cols;
int max_gray_level = 0;
for (int j = 0; j < height; j++)
{
int* srcdata = src.ptr<int>(j);
for (int i = 0; i < width; i++)
{
if (srcdata[i] > max_gray_level)
{
max_gray_level = srcdata[i];
}
}
}
max_gray_level++;
if (max_gray_level > 16)
{
for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width; j++)
{
srcdata[j] = (int)srcdata[j] / gray_level;
}
}
dst.create(gray_level, gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height - 1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i + 1);
for (int j = 1; j < width; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j-1];
dst.ptr<int>(rows)[cols]++;
}
}
}
else
{
dst.create(max_gray_level, max_gray_level, CV_32SC1);
dst = Scalar::all(0);
for (int i = 0; i < height - 1; i++)
{
int*srcdata = src.ptr<int>(i);
int*srcdata1 = src.ptr<int>(i + 1);
for (int j = 1; j < width; j++)
{
int rows = srcdata[j];
int cols = srcdata1[j-1];
dst.ptr<int>(rows)[cols]++;
}
}
}
}
void feature_computer(Mat&src, double& Asm, double& Eng, double& Con, double& Idm)//计算特征值
{
int height = src.rows;
int width = src.cols;
int total = 0;
for (int i = 0; i < height; i++)
{
int*srcdata = src.ptr<int>(i);
for (int j = 0; j < width; j++)
{
total += srcdata[j];//求图像所有像素的灰度值的和
}
}
Mat copy;
copy.create(height, width, CV_64FC1);
for (int i = 0; i < height; i++)
{
int*srcdata = src.ptr<int>(i);
double*copydata = copy.ptr<double>(i);
for (int j = 0; j < width; j++)
{
copydata[j]=(double)srcdata[j]/(double)total;//图像每一个像素的的值除以像素总和
}
}
for (int i = 0; i < height; i++)
{
double*srcdata = copy.ptr<double>(i);
for (int j = 0; j < width; j++)
{
Asm += srcdata[j] * srcdata[j];//能量
if (srcdata[j]>0)
Eng -= srcdata[j] * log(srcdata[j]);//熵
Con += (double)(i - j)*(double)(i - j)*srcdata[j];//对比度
Idm += srcdata[j] / (1 + (double)(i - j)*(double)(i - j));//逆差矩
}
}
}
int main()
{
Mat dst_horison, dst_vertical, dst_45, dst_135;
Mat src = imread("C:\\Users\\aoe\\Desktop\\Visual C+\\Visual C+\\chapter08\\pic\\healthy\\201.bmp");
if (src.empty())
{
return -1;
}
Mat src_gray;
//src.create(src.size(), CV_8UC1);
//src_gray = Scalar::all(0);
cvtColor(src, src_gray, COLOR_BGR2GRAY);
//src =( Mat_<int>(6, 6) << 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2, 2, 3, 0, 1, 2, 3, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2 );
//src = (Mat_<int>(4, 4) << 1, 17, 0, 3,3,2,20,5,26,50,1,2,81,9,25,1);
getglcm_horison(src_gray, dst_horison);
getglcm_vertical(src_gray, dst_vertical);
getglcm_45(src_gray, dst_45);
getglcm_135(src_gray, dst_135);
double eng_horison=0, con_horison=0, idm_horison=0, asm_horison=0;
feature_computer(dst_horison, asm_horison, eng_horison, con_horison, idm_horison);
cout << "asm_horison:" << asm_horison << endl;
cout << "eng_horison:" << eng_horison << endl;
cout << "con_horison:" << con_horison << endl;
cout << "idm_horison:" << idm_horison << endl;
/* for (int i = 0; i < dst_horison.rows; i++)
{
int *data = dst_horison.ptr<int>(i);
for (int j = 0; j < dst_horison.cols; j++)
{
cout << data[j] << " ";
}
cout << endl;
}
cout << endl;
for (int i = 0; i < dst_vertical.rows; i++)
{
int *data = dst_vertical.ptr<int>(i);
for (int j = 0; j < dst_vertical.cols; j++)
{
cout << data[j] << " ";
}
cout << endl;
}
cout << endl;
for (int i = 0; i < dst_45.rows; i++)
{
int *data = dst_45.ptr<int>(i);
for (int j = 0; j < dst_45.cols; j++)
{
cout << data[j] << " ";
}
cout << endl;
}
cout << endl;
for (int i = 0; i < dst_135.rows; i++)
{
int *data = dst_135.ptr<int>(i);
for (int j = 0; j < dst_135.cols; j++)
{
cout << data[j] << " ";
}
cout << endl;
}*/
system("pause");
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
参考:
灰度共生矩阵的定义与理解:http://www.cnblogs.com/xiangshancuizhu/archive/2011/07/24/2115266.html
opencv实现:
http://blog.csdn.net/cxf7394373/article/details/6988229
http://download.csdn.net/download/sxnzxz/3419181