- 博客(771)
- 资源 (27)
- 收藏
- 关注
原创 【youcans的OpenCV例程300篇】总目录
【youcans 的 OpenCV 例程300篇】总目录转载本系列作品时必须标注以下版权内容:必须标注以下版权内容:youcans@qq.com, 【youcans 的 OpenCV 例程】, https://blog.csdn.net/youcans/category_11459626.html......................................................
2022-06-03 14:33:39
75608
63
原创 【动手学STM32G4】(2)STM32G431之外部中断—按键控制
本文介绍了STM32G431微控制器的外部中断实验,通过按键控制板载LED灯状态。主要内容包括:1)实验目标为掌握STM32G4外部中断编程技术;2)详细讲解GPIO和外部中断(EXTI)的基本概念及配置方法;3)使用STM32CubeMX工具配置工程,设置PA5为LED输出引脚,PC13为外部中断输入引脚;4)配置160MHz系统时钟和中断优先级。实验基于NUCLEO-G431RB开发板,利用STM32CubeIDE开发环境,实现按键触发中断翻转LED状态的功能。
2026-01-18 16:12:13
477
原创 【STM32-MBD】(9)Simulink 模型开发之 DAC 输出
本文介绍基于STM32G431RB的Simulink模型开发,讲解DAC输出功能实现。内容包括:1)安装硬件支持包;2)使用STM32CubeMX配置工程;3)在Simulink中创建DAC输出模型。
2026-01-15 08:00:00
1148
原创 【DeepSeek论文精读】17. 通过可扩展查找的条件记忆:大语言模型稀疏化的新维度
DeepSeek团队提出Engram条件记忆模块,通过可扩展查找机制解决大语言模型知识检索效率低的问题。Engram结合N-gram嵌入的O(1)静态检索与MoE动态计算,利用哈希压缩和上下文感知门控优化性能。
2026-01-13 23:34:17
976
2
原创 【动手学STM32G4】(8)STM32G431之 DAC进阶
本详细介绍了STM32G431RB微控制器的DAC应用开发,从基础到进阶逐步深入。实验内容包括:使用SysTick定时器实现基础DAC输出、定时器中断优化方案、以及DMA+TIM+DAC全硬件高级方案。文章详细讲解了DAC工作原理、配置方法及性能优化技巧,涵盖CubeMX工程配置、时钟设置、GPIO配置等关键步骤,并提供了完整的代码实现和调试方法。通过三个不同层次的实验方案,帮助开发者掌握从简单电压输出到专业级波形生成的DAC应用开发技术。
2026-01-11 22:18:03
776
原创 【动手学STM32G4】(3)STM32G431之定时器
本文介绍了使用STM32G431RB定时器实现精确定时功能的方法。通过配置TIM1定时器每1ms产生一次中断,在中断服务函数中计数翻转PA9引脚电平,最终产生1Hz方波信号。
2026-01-06 20:44:28
1107
原创 【STM32-MBD】(13)Simulink 模型开发之 TIM+ADC
本文介绍了在Simulink中开发STM32定时器(TIM)与ADC协同工作的模型,实现精确时间控制的模拟量采集系统。
2026-01-04 08:53:11
1030
原创 从编程小白到博客专家:一名学习者的故事
5年前,作者作为大一新生开始在CSDN记录Python学习过程,初衷只是为解决自学中的困惑。通过持续记录,逐渐形成了系统的知识体系。2025年,作者已成长为人工智能研究生和CSDN博客专家,出版了《数字图像处理》专著。 文章分享了三点经验:1)真实记录学习过程,不跳过任何细节;2)将AIGC作为学习助手而非替代工具;3)坚持写作初心,不为榜单所累。
2026-01-03 14:35:04
1251
2
原创 【DeepSeek论文精读】16. mHC:流形约束超连接
2026年元旦,DeepSeek 公布新论文 “mHC: Manifold-Constrained Hyper-Connections”。本文提出流形约束超连接(mHC)框架,解决传统超连接(HC)在大规模模型训练中的不稳定性问题。该工作为深度网络拓扑设计提供了新思路,有望推动大规模基础模型的架构演进。
2026-01-02 19:08:53
1073
原创 【STM32-MBD】(11)Simulink 模型开发之处理器在环仿真(PIL)
本文介绍了基于STM32的处理器在环仿真(PIL)方法,通过MATLAB/Simulink与STM32CubeMX结合实现嵌入式系统开发,适用于STM32G431等开发板。1)安装STM32硬件支持包;2)使用Simulink搭建模型并自动生成代码;3)通过PIL测试验证代码在真实硬件上的运行效果;4)利用外部模式进行实时监控与参数调节。
2026-01-01 22:56:52
751
原创 【STM32-MBD】(8)Simulink 模型开发之 ADC 转换
本文介绍了基于Model-Based Design的STM32开发流程中ADC模块的应用。通过Simulink构建单通道ADC采样模型,采集NUCLEO开发板电位器电压,并生成代码部署到STM32G431开发板。详细说明了STM32CubeMX的配置步骤,包括时钟设置、ADC通道配置(PC2→ADC1_IN8)及工程参数设定,实验验证了从Simulink模型到硬件实现的完整流程。
2025-12-30 08:00:00
1522
原创 【STM32-MBD】(7)Simulink 模型开发之 定时器
本文介绍了基于Model-Based Design的STM32定时器开发流程。通过STM32CubeMX配置TIM1定时器,生成周期性中断,驱动LED闪烁以验证定时精度。详细说明了硬件支持包安装、CubeMX工程创建、时钟配置、TIM参数设置等关键步骤,并强调了将Timebase Source改为非SysTick定时器、外设驱动选择LL模式等重要注意事项。实验结果为后续PWM、ADC采样等应用提供了可靠的时间基准,完整展示了从Simulink建模到硬件部署的MBD开发过程。
2025-12-29 08:00:00
1065
原创 【STM32-MBD】(10)Simulink 模型开发之上位机显示波形
本文介绍了基于STM32-MBD的Simulink模型开发系列教程,涵盖硬件支持包安装、基础点灯、状态机控制、外部中断、PWM输出、ADC转换、串口通信以及上位机波形显示等内容。展示了如何利用Simulink模型驱动开发,无需手写应用层代码,即可完成嵌入式系统功能开发,包括温度采集、串口通信和上位机数据显示等典型应用案例。
2025-12-28 14:06:08
1078
原创 【动手学UNet】(14)Unet_V2 主程序
本文介绍了UNet V2图像分割模型的实现与应用。文章包含完整的UNet V2项目代码,从数据加载、模型构建到训练评估全流程,提供了可视化模块(visualization.py),以及测试模块(test_unetv2.py)用于模型性能评估。该实现支持Tensor和Numpy输入,自动处理不同维度的图像数据,并计算Dice、IoU等分割指标,为医学图像分割等任务提供了完整的解决方案。
2025-12-27 08:00:00
768
原创 【STM32-MBD】(9)Simulink 模型开发之串口通信
本文介绍了基于Simulink和STM32CubeMX的模型化设计方法,实现STM32串口通信功能。 功能实现:1 构建串口回显(Echo)实验,2 PC端发送数据通过虚拟串口传输,3 STM32接收数据后原样回传PC端。该方法通过模型化设计简化了传统串口通信开发流程。
2025-12-26 07:30:00
627
原创 【动手学UNet】(13)Unet_V2 模型评估与训练
本文介绍了UNet V2模型的评估与训练方法,主要包括损失函数模块和评估指标模块的实现。损这些模块为UNet V2模型在医学图像分割任务中的训练和评估提供了完整支持。
2025-12-25 08:00:00
833
原创 【动手学UNet】(12)Unet_V2 模型实现
本文介绍了UNet_V2模型的实现过程,主要包括数据加载模块和模型架构两部分。模型架构包含多层级编码器(EncoderV2)、语义细节注入模块(SDI)和解码器,通过逐层特征提取和语义注入增强模型性能。提供了完整的代码实现和测试方法,帮助开发者从零开始构建改进版的UNet图像分割模型。
2025-12-24 09:01:13
789
原创 【动手学UNet】(11)创建Unet_V2 项目
本文介绍了如何创建Unet_V2项目并搭建其目录结构,包括PyCharm环境配置、conda虚拟环境检查、模块化项目架构设计及核心模块初始化。项目采用标准化的UNet图像分割模型开发流程,包含数据集处理、模型训练、评估和可视化等功能模块。通过创建config.py、unet.py等基础文件,确保各模块能正确导入,为后续实现编码器-解码器结构和SDI模块奠定基础。
2025-12-23 09:15:55
1023
原创 【动手学STM32G4】(9)STM32G431之 ADC 温度检测
本系列基于STM32G431,介绍从项目创建到功能实现的完整开发流程。本文利用内部温度传感器和ADC通道采集数据,通过DMA传输,结合LPUART在上位机(VOFA+)实时显示温度曲线。重点讲解内部通道校准、线性温度计算及串口通信实现。
2025-12-21 08:00:00
1205
原创 【STM32-MBD】(1b)Matlab2025b 安装 STM32 硬件支持包
本文介绍了在 MATLAB2025 环境下为STM32处理器安装硬件支持包的详细步骤。主要内容包括:1)必需软硬件条件;2)嵌入式硬件支持包的特性;3)详细安装方法。本系列介绍 Simulink MBD 及在 STM32G4 的应用。
2025-12-20 09:11:20
1832
2
原创 【STM32-MBD】(12)Simulink 模型开发之片上温度检测
本文介绍使用Simulink对STM32进行ADC转换的方法。在Simulink中建立STM32G431的ADC仿真模型,生成可部署到NUCLEO-G431RB开发板的工程代码。项目实现了对片上温度传感器和内部电压基准的ADC转换,通过虚拟串口在VOFA+中绘制实时温度曲线。详细说明了软硬件环境配置要求、STM32CubeMX工程设置以及以及开发环境测试流程,为基于模型设计的STM32开发提供了完整解决方案。
2025-12-18 10:25:01
122
原创 【DINOv3】(8)SegDINO:基于DINO-V3 的高效医学与自然图像分割设计
SegDINO 是一种基于 DINOv3 的高效图像分割框架,通过冻结预训练的 DINOv3 视觉变换器作为编码器,并搭配轻量级 MLP 解码器,实现了高性能与高效率的平衡。该方法从 DINOv3 中提取多层特征进行对齐和拼接,仅需训练少量解码器参数即可完成分割任务。实验表明,SegDINO 在医学和自然图像数据集上均达到 SOTA 性能,同时具备优异的参数效率和推理速度。
2025-12-18 08:00:00
1554
原创 【动手学STM32G4】(1)STM32G431之创建项目
本系列教程以NUCLEO-G431RB开发板为基础,详细讲解STM32G4系列微控制器的开发流程。首篇教程重点介绍两种开发方式: 使用CubeIDE导入现有项目:通过GPIO_IOToggle例程演示LED闪烁功能,包括项目导入、代码修改(调整闪烁频率)、编译下载和调试运行的全过程。 使用CubeMX创建新项目:从零开始配置GPIO输出管脚,生成LED闪烁项目的完整代码框架,并导入到CubeIDE中进行后续开发。
2025-12-17 18:01:12
956
原创 【STM32-MBD】(5)Simulink 模型部署之外部中断:按键输入
本文介绍基于 NUCLEO-STM32G431RB 开发板的 Simulink 外部中断模型开发方法。使用Simulink的Hardware Interrupt模块创建中断服务程序,实现按键控制LED闪烁频率的功能。本文提供了从 Simulink 建模仿真后直接生成 STM32 项目工程代码,将仿真模型部署到 STM32 开发板上的完整开发流程。
2025-12-17 08:00:00
1407
原创 【动手学STM32G4】(5)STM32G431之ADC与DAC
本文介绍了基于STM32G4系列微控制器的ADC采集与DAC输出实验,构建了一个完整的模拟信号闭环处理系统。本文提供了从硬件连接到软件配置的完整指南,帮助开发者快速掌握STM32G4模拟外设的使用方法。
2025-12-16 08:00:00
1747
原创 【医学影像 AI】Affective-ROPTester: LLMs的能力和偏差分析在预测 ROP 病变中的应用
本研究构建了首个中文ROP风险预测数据集CROP(993条早产儿入院记录),提出Affective-ROPTester评估框架,探究LLMs在ROP预测中的能力与偏差。研究发现:1)LLMs仅依赖内在知识预测效果有限,引入外部知识可显著提升性能;2)模型存在高估中高风险的固有偏差;3)积极情感框架能有效缓解预测偏差。该研究为医疗AI的风险预测提供了新基准,揭示了情感提示工程在提升诊断可靠性中的重要作用。
2025-12-15 08:00:00
1690
原创 【医学影像 AI】MADGNet:用于医学图像分割的模态无关领域可泛化的网络
MADGNet,一种用于医学图像分割的模态无关领域可泛化网络,通过多频率多尺度注意力机制解决现有方法在跨模态泛化中的局限性。包含两个核心模块: 1)MFMSA模块:融合多频率通道注意力与多尺度空间注意力,优化边界特征提取; 2)E-SDM模块:通过集成式深度监督减少上采样中的信息损失。
2025-12-14 08:00:00
1169
原创 【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
FunBench 视觉问答基准专为评估多模态大型语言模型(MLLMs)的眼底图像解读能力而设计,其核心特点是四级分层任务架构(模态感知、解剖结构感知、病变分析、疾病诊断)和三种针对性评估模式(基于线性探针的视觉编码器评估、知识提示的语言模型评估、整体评估),数据集涵盖 16,348 张眼底图像和 91,810 个视觉问题
2025-12-13 08:00:00
1675
原创 【动手学UNet】(10)视网膜图像预处理
本文介绍了UNet视网膜图像分割中的预处理方法,重点讲解绿色通道提取和CLAHE增强技术。本文给出了预处理流程和项目结构,通过配置文件控制预处理选项,便于实验对比。该项目采用模块化设计,将预处理逻辑封装在RetinalPreprocessor类中,确保训练和测试时处理一致。这些预处理方法能有效提升模型对细小血管的分割性能。
2025-12-12 08:00:00
1050
原创 【动手学电机驱动】 STM32-FOC(11)ST MCSDK6.0 电机控制软件框架
STM32电机控制软件开发套件(MCSDK)专为STM32微控制器设计,支持磁场定向控制(FOC)和六步控制方法,驱动三相永磁同步电机。MCSDK包含固件库、工作台、控制板管理工具等组件,通过图形界面快速配置电机参数并生成项目文件。其软件架构分为应用程序、UI库、电机控制库等部分,提供完整的API接口和底层驱动支持。该套件适用于STM32全系列MCU,可实现速度环/电流环控制、弱磁控制等核心功能,帮助开发者快速评估和开发电机控制应用。
2025-12-11 08:00:00
1726
原创 【跟我学YOLO】YOLOv13 与 DINO ViT 的系统集成
本文介绍了YOLOv13与DINO ViT的系统集成方案。该方案提供125+种模型组合,包含5种YOLOv13尺寸、2种DINO版本和20+种DINO变体,支持单/双精度集成。系统采用模块化架构设计,通过CNN主干网络与DINO3增强模块的协同工作,实现目标检测性能提升。单尺度(P4)方案适合通用场景,双尺度(P3+P4)则适用于复杂多尺度检测。模型库涵盖从Nano到XLarge的不同规模,并提供详细的选择指南,满足从嵌入式设备到高性能计算的各种应用需求。
2025-12-10 11:04:38
688
原创 【动手学STM32G4】(7)STM32G431之上位机波形显示
摘要: 本文介绍了使用STM32G431开发板通过USB虚拟串口与上位机VOFA+进行实时波形显示的实现方法。(1)解析VOFA+支持的FireWater文本协议和JustFloat二进制协议;(2)详细说明STM32CubeMX工程配置步骤,涵盖时钟设置、LPUART1参数配置及DMA传输设置;(3)提供完整的软硬件环境搭建方案。
2025-12-10 10:24:22
1243
原创 【跟我学YOLO】Mamba-YOLO-World:YOLO-World与Mamba 融合的开放词汇目标检测
Mamba-YOLO-World模型,将状态空间模型(SSM)引入目标检测领域。该模型通过线性复杂度的ODMamba骨干网络替代传统Transformer的自注意力机制,显著降低计算负担,并设计多分支RG模块增强局部特征捕捉能力。实验表明,其轻量版在COCO数据集上推理速度达1.5ms/帧时mAP提升7.5%,且无需预训练即可直接训练。
2025-12-10 08:00:00
1775
原创 【youcans论文精读】Bridged U-net:使用二维桥接U-net进行前列腺分割
本文提出一种改进的2D Bridged U-net架构用于医学图像分割,针对传统U-net在深度训练、激活函数选择和损失函数优化方面的不足进行创新。通过桥接两个U-net网络实现多尺度特征共享,采用拼接方式连接编码-解码层以保持信息流动稳定性。研究同时探讨了ELU与ReLU激活函数的组合使用策略,并提出新型损失函数以解决Dice损失导致的训练振荡问题。
2025-12-09 08:00:00
1609
原创 【动手学STM32G4】(7)STM32G431之USB虚拟串口
详细介绍 STM32G4系列开发板通过USB虚拟串口(VCP)实现通信的方法。(1)USB虚拟串口的工作原理;(2)NUCLEO-G431RB开发板的硬件连接;(3)使用STM32CubeMX创建项目的详细步骤,包括时钟配置、LPUART1参数设置等关键配置项;(4)使用 CubeIDE 编程和调试。该技术为嵌入式系统提供了便捷的调试和通信方案,仅需一根USB线即可实现串口通信功能。
2025-12-09 07:30:00
2630
原创 【CLIP】基于CLIP与伪标签的单阶段零样本目标检测网络
基于CLIP与伪标签的单阶段零样本目标检测网络CLIP-YOLO,通过视觉语言嵌入对齐和通道分组增强坐标注意力模块(CGEC)优化特征表征,并利用CLIP与区域提议网络生成高质量伪标签扩展训练集多样性。(1)单阶段检测框架结合CLIP零样本分类能力;(2)CGEC模块增强特征表示;(3)多模态伪标签生成机制。代码已开源。
2025-12-08 11:02:52
891
原创 【跟我学YOLO】Mamba YOLO:基于状态空间模型的目标检测基线模型
Mamba YOLO目标检测模型,通过状态空间模型(SSM)替代传统Transformer的自注意力机制,显著降低计算复杂度。核心创新包括:1)设计ODMamba主干网络,采用线性复杂度SSM实现高效全局建模;2)提出RG Block模块增强通道信息提取,解决SSM在图像任务中的感受野不足问题;3)构建完整检测框架,包含Simple Stem、PAFPN颈部网络和解耦头部。
2025-12-08 08:00:00
998
原创 【动手学UNet】(9)Unet 项目文档
本项目基于PyTorch实现U-Net视网膜图像分割,包含完整训练/验证/推理流程。采用模块化设计,支持数据加载、模型训练、评估指标计算、可视化及日志记录等功能。核心特性包括:Dice+BCE组合损失、IoU/Dice评估、三连图可视化、Checkpoint管理、TensorBoard日志和统一CLI入口。项目结构清晰,可作为医学图像分割模板扩展使用,适用于灰度/RGB输入,提供断点续训和单图推理能力。
2025-12-07 08:00:00
2492
原创 【动手学UNet】(8)训练日志保存
本文介绍了UNet图像分割模型的训练日志保存功能实现。通过utils/logger.py模块封装了TensorBoard日志记录功能,支持训练过程中的loss和dice指标可视化。文章详细说明了日志记录器的初始化方法、训练步骤和epoch级别的日志记录接口,以及验证集评估结果的记录方式。同时提供了日志目录配置和训练脚本的修改方法,使开发者能够方便地将日志功能集成到UNet训练流程中,便于模型训练过程的监控和分析。
2025-12-06 07:30:00
1167
原创 【动手学UNet】(7)主程序
【动手学UNet】系列教程提供完整的UNet图像分割实现指南,包含7个核心模块:项目创建、数据加载、模型实现、训练、保存/加载、评估和主程序。主程序(main.py)作为统一入口,支持训练、评估和单图推理三种模式,可通过命令行参数灵活配置。训练支持断点续训和烟雾测试;评估可计算Dice/IoU指标并保存结果;单图推理支持原图/真值/预测的三连图展示。
2025-12-05 07:30:00
990
欧瑞博智能体验馆设计标准
2023-03-10
Visual ChatGPT: Talking, Drawing and Editing with Visual F
2023-03-15
2020中国智能家居生态发展白皮书
2023-03-10
2019中国智能家居发展白皮书
2023-03-10
HDL河东智能家居解决方案
2023-03-10
HDL无线家居智能解决方案
2023-03-10
带有 Opencv-contrib 的 OpenCV-Python 库
2022-12-27
爱心源码-基于傅里叶描述符实现
2022-12-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅