自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

youcans的博客

数字图像处理—基于OpenCV/Python

  • 博客(759)
  • 资源 (27)
  • 收藏
  • 关注

原创 【youcans的OpenCV例程300篇】总目录

【youcans 的 OpenCV 例程300篇】总目录转载本系列作品时必须标注以下版权内容:必须标注以下版权内容:youcans@qq.com, 【youcans 的 OpenCV 例程】, https://blog.csdn.net/youcans/category_11459626.html......................................................

2022-06-03 14:33:39 75274 63

原创 【STM32-MBD】(9)Simulink 模型开发之上位机显示波形

本文介绍了基于STM32-MBD的Simulink模型开发系列教程,涵盖硬件支持包安装、基础点灯、状态机控制、外部中断、PWM输出、ADC转换、串口通信以及上位机波形显示等内容。展示了如何利用Simulink模型驱动开发,无需手写应用层代码,即可完成嵌入式系统功能开发,包括温度采集、串口通信和上位机数据显示等典型应用案例。

2025-12-28 14:06:08 754

原创 【动手学UNet】(14)Unet_V2 主程序

本文介绍了UNet V2图像分割模型的实现与应用。文章包含完整的UNet V2项目代码,从数据加载、模型构建到训练评估全流程,提供了可视化模块(visualization.py),以及测试模块(test_unetv2.py)用于模型性能评估。该实现支持Tensor和Numpy输入,自动处理不同维度的图像数据,并计算Dice、IoU等分割指标,为医学图像分割等任务提供了完整的解决方案。

2025-12-27 08:00:00 373

原创 【STM32-MBD】(8)Simulink 模型开发之串口通信

本文介绍了基于Simulink和STM32CubeMX的模型化设计方法,实现STM32串口通信功能。 功能实现:1 构建串口回显(Echo)实验,2 PC端发送数据通过虚拟串口传输,3 STM32接收数据后原样回传PC端。该方法通过模型化设计简化了传统串口通信开发流程。

2025-12-26 07:30:00 550

原创 【动手学UNet】(13)Unet_V2 模型评估与训练

本文介绍了UNet V2模型的评估与训练方法,主要包括损失函数模块和评估指标模块的实现。损这些模块为UNet V2模型在医学图像分割任务中的训练和评估提供了完整支持。

2025-12-25 08:00:00 790

原创 【动手学UNet】(12)Unet_V2 模型实现

本文介绍了UNet_V2模型的实现过程,主要包括数据加载模块和模型架构两部分。模型架构包含多层级编码器(EncoderV2)、语义细节注入模块(SDI)和解码器,通过逐层特征提取和语义注入增强模型性能。提供了完整的代码实现和测试方法,帮助开发者从零开始构建改进版的UNet图像分割模型。

2025-12-24 09:01:13 774

原创 【动手学UNet】(11)创建Unet_V2 项目

本文介绍了如何创建Unet_V2项目并搭建其目录结构,包括PyCharm环境配置、conda虚拟环境检查、模块化项目架构设计及核心模块初始化。项目采用标准化的UNet图像分割模型开发流程,包含数据集处理、模型训练、评估和可视化等功能模块。通过创建config.py、unet.py等基础文件,确保各模块能正确导入,为后续实现编码器-解码器结构和SDI模块奠定基础。

2025-12-23 09:15:55 997

原创 【动手学STM32G4】(8)STM32G431之 ADC 温度检测

本系列基于STM32G431,介绍从项目创建到功能实现的完整开发流程。本文利用内部温度传感器和ADC通道采集数据,通过DMA传输,结合LPUART在上位机(VOFA+)实时显示温度曲线。重点讲解内部通道校准、线性温度计算及串口通信实现。

2025-12-21 08:00:00 1031

原创 【STM32-MBD】(1b)Matlab2025b 安装 STM32 硬件支持包

本文介绍了在 MATLAB2025 环境下为STM32处理器安装硬件支持包的详细步骤。主要内容包括:1)必需软硬件条件;2)嵌入式硬件支持包的特性;3)详细安装方法。本系列介绍 Simulink MBD 及在 STM32G4 的应用。

2025-12-20 09:11:20 1551 2

原创 【STM32-MBD】(7)Simulink 模型开发之 ADC 转换

本文介绍使用Simulink对STM32进行ADC转换的方法。在Simulink中建立STM32G431的ADC仿真模型,生成可部署到NUCLEO-G431RB开发板的工程代码。项目实现了对片上温度传感器和内部电压基准的ADC转换,通过虚拟串口在VOFA+中绘制实时温度曲线。详细说明了软硬件环境配置要求、STM32CubeMX工程设置以及以及开发环境测试流程,为基于模型设计的STM32开发提供了完整解决方案。

2025-12-18 10:25:01 40

原创 【DINOv3】(8)SegDINO:基于DINO-V3 的高效医学与自然图像分割设计

SegDINO 是一种基于 DINOv3 的高效图像分割框架,通过冻结预训练的 DINOv3 视觉变换器作为编码器,并搭配轻量级 MLP 解码器,实现了高性能与高效率的平衡。该方法从 DINOv3 中提取多层特征进行对齐和拼接,仅需训练少量解码器参数即可完成分割任务。实验表明,SegDINO 在医学和自然图像数据集上均达到 SOTA 性能,同时具备优异的参数效率和推理速度。

2025-12-18 08:00:00 1414

原创 【动手学STM32G4】(1)STM32G431之导入和创建项目

本系列教程以NUCLEO-G431RB开发板为基础,详细讲解STM32G4系列微控制器的开发流程。首篇教程重点介绍两种开发方式: 使用CubeIDE导入现有项目:通过GPIO_IOToggle例程演示LED闪烁功能,包括项目导入、代码修改(调整闪烁频率)、编译下载和调试运行的全过程。 使用CubeMX创建新项目:从零开始配置GPIO输出管脚,生成LED闪烁项目的完整代码框架,并导入到CubeIDE中进行后续开发。

2025-12-17 18:01:12 807

原创 【STM32-MBD】(5)Simulink 模型部署之外部中断:按键输入

本文介绍基于 NUCLEO-STM32G431RB 开发板的 Simulink 外部中断模型开发方法。使用Simulink的Hardware Interrupt模块创建中断服务程序,实现按键控制LED闪烁频率的功能。本文提供了从 Simulink 建模仿真后直接生成 STM32 项目工程代码,将仿真模型部署到 STM32 开发板上的完整开发流程。

2025-12-17 08:00:00 1289

原创 【动手学STM32G4】(4)STM32G431之ADC与DAC

本文介绍了基于STM32G4系列微控制器的ADC采集与DAC输出实验,构建了一个完整的模拟信号闭环处理系统。本文提供了从硬件连接到软件配置的完整指南,帮助开发者快速掌握STM32G4模拟外设的使用方法。

2025-12-16 08:00:00 1511

原创 【医学影像 AI】Affective-ROPTester: LLMs的能力和偏差分析在预测 ROP 病变中的应用

本研究构建了首个中文ROP风险预测数据集CROP(993条早产儿入院记录),提出Affective-ROPTester评估框架,探究LLMs在ROP预测中的能力与偏差。研究发现:1)LLMs仅依赖内在知识预测效果有限,引入外部知识可显著提升性能;2)模型存在高估中高风险的固有偏差;3)积极情感框架能有效缓解预测偏差。该研究为医疗AI的风险预测提供了新基准,揭示了情感提示工程在提升诊断可靠性中的重要作用。

2025-12-15 08:00:00 1660

原创 【医学影像 AI】MADGNet:用于医学图像分割的模态无关领域可泛化的网络

MADGNet,一种用于医学图像分割的模态无关领域可泛化网络,通过多频率多尺度注意力机制解决现有方法在跨模态泛化中的局限性。包含两个核心模块: 1)MFMSA模块:融合多频率通道注意力与多尺度空间注意力,优化边界特征提取; 2)E-SDM模块:通过集成式深度监督减少上采样中的信息损失。

2025-12-14 08:00:00 1126

原创 【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力

FunBench 视觉问答基准专为评估多模态大型语言模型(MLLMs)的眼底图像解读能力而设计,其核心特点是四级分层任务架构(模态感知、解剖结构感知、病变分析、疾病诊断)和三种针对性评估模式(基于线性探针的视觉编码器评估、知识提示的语言模型评估、整体评估),数据集涵盖 16,348 张眼底图像和 91,810 个视觉问题

2025-12-13 08:00:00 1470

原创 【动手学UNet】(10)视网膜图像预处理

本文介绍了UNet视网膜图像分割中的预处理方法,重点讲解绿色通道提取和CLAHE增强技术。本文给出了预处理流程和项目结构,通过配置文件控制预处理选项,便于实验对比。该项目采用模块化设计,将预处理逻辑封装在RetinalPreprocessor类中,确保训练和测试时处理一致。这些预处理方法能有效提升模型对细小血管的分割性能。

2025-12-12 08:00:00 1041

原创 【动手学电机驱动】 STM32-FOC(11)ST MCSDK6.0 电机控制软件框架

STM32电机控制软件开发套件(MCSDK)专为STM32微控制器设计,支持磁场定向控制(FOC)和六步控制方法,驱动三相永磁同步电机。MCSDK包含固件库、工作台、控制板管理工具等组件,通过图形界面快速配置电机参数并生成项目文件。其软件架构分为应用程序、UI库、电机控制库等部分,提供完整的API接口和底层驱动支持。该套件适用于STM32全系列MCU,可实现速度环/电流环控制、弱磁控制等核心功能,帮助开发者快速评估和开发电机控制应用。

2025-12-11 08:00:00 1601

原创 YOLOv13 与 DINO ViT 的系统集成

本文介绍了YOLOv13与DINO ViT的系统集成方案。该方案提供125+种模型组合,包含5种YOLOv13尺寸、2种DINO版本和20+种DINO变体,支持单/双精度集成。系统采用模块化架构设计,通过CNN主干网络与DINO3增强模块的协同工作,实现目标检测性能提升。单尺度(P4)方案适合通用场景,双尺度(P3+P4)则适用于复杂多尺度检测。模型库涵盖从Nano到XLarge的不同规模,并提供详细的选择指南,满足从嵌入式设备到高性能计算的各种应用需求。

2025-12-10 11:04:38 652

原创 【动手学STM32G4】(7)STM32G431之上位机波形显示

摘要: 本文介绍了使用STM32G431开发板通过USB虚拟串口与上位机VOFA+进行实时波形显示的实现方法。(1)解析VOFA+支持的FireWater文本协议和JustFloat二进制协议;(2)详细说明STM32CubeMX工程配置步骤,涵盖时钟设置、LPUART1参数配置及DMA传输设置;(3)提供完整的软硬件环境搭建方案。

2025-12-10 10:24:22 1139

原创 【跟我学YOLO】Mamba-YOLO-World:YOLO-World与Mamba 融合的开放词汇目标检测

Mamba-YOLO-World模型,将状态空间模型(SSM)引入目标检测领域。该模型通过线性复杂度的ODMamba骨干网络替代传统Transformer的自注意力机制,显著降低计算负担,并设计多分支RG模块增强局部特征捕捉能力。实验表明,其轻量版在COCO数据集上推理速度达1.5ms/帧时mAP提升7.5%,且无需预训练即可直接训练。

2025-12-10 08:00:00 1685

原创 【youcans论文精读】Bridged U-net:使用二维桥接U-net进行前列腺分割

本文提出一种改进的2D Bridged U-net架构用于医学图像分割,针对传统U-net在深度训练、激活函数选择和损失函数优化方面的不足进行创新。通过桥接两个U-net网络实现多尺度特征共享,采用拼接方式连接编码-解码层以保持信息流动稳定性。研究同时探讨了ELU与ReLU激活函数的组合使用策略,并提出新型损失函数以解决Dice损失导致的训练振荡问题。

2025-12-09 08:00:00 1584

原创 【动手学STM32G4】(6)STM32G431之USB 虚拟串口通信

详细介绍 STM32G4系列开发板通过USB虚拟串口(VCP)实现通信的方法。(1)USB虚拟串口的工作原理;(2)NUCLEO-G431RB开发板的硬件连接;(3)使用STM32CubeMX创建项目的详细步骤,包括时钟配置、LPUART1参数设置等关键配置项;(4)使用 CubeIDE 编程和调试。该技术为嵌入式系统提供了便捷的调试和通信方案,仅需一根USB线即可实现串口通信功能。

2025-12-09 07:30:00 2495

原创 【CLIP】基于CLIP与伪标签的单阶段零样本目标检测网络

基于CLIP与伪标签的单阶段零样本目标检测网络CLIP-YOLO,通过视觉语言嵌入对齐和通道分组增强坐标注意力模块(CGEC)优化特征表征,并利用CLIP与区域提议网络生成高质量伪标签扩展训练集多样性。(1)单阶段检测框架结合CLIP零样本分类能力;(2)CGEC模块增强特征表示;(3)多模态伪标签生成机制。代码已开源。

2025-12-08 11:02:52 842

原创 【跟我学YOLO】Mamba YOLO:基于状态空间模型的目标检测基线模型

Mamba YOLO目标检测模型,通过状态空间模型(SSM)替代传统Transformer的自注意力机制,显著降低计算复杂度。核心创新包括:1)设计ODMamba主干网络,采用线性复杂度SSM实现高效全局建模;2)提出RG Block模块增强通道信息提取,解决SSM在图像任务中的感受野不足问题;3)构建完整检测框架,包含Simple Stem、PAFPN颈部网络和解耦头部。

2025-12-08 08:00:00 931

原创 【动手学UNet】(9)Unet 项目文档

本项目基于PyTorch实现U-Net视网膜图像分割,包含完整训练/验证/推理流程。采用模块化设计,支持数据加载、模型训练、评估指标计算、可视化及日志记录等功能。核心特性包括:Dice+BCE组合损失、IoU/Dice评估、三连图可视化、Checkpoint管理、TensorBoard日志和统一CLI入口。项目结构清晰,可作为医学图像分割模板扩展使用,适用于灰度/RGB输入,提供断点续训和单图推理能力。

2025-12-07 08:00:00 2470

原创 【动手学UNet】(8)训练日志保存

本文介绍了UNet图像分割模型的训练日志保存功能实现。通过utils/logger.py模块封装了TensorBoard日志记录功能,支持训练过程中的loss和dice指标可视化。文章详细说明了日志记录器的初始化方法、训练步骤和epoch级别的日志记录接口,以及验证集评估结果的记录方式。同时提供了日志目录配置和训练脚本的修改方法,使开发者能够方便地将日志功能集成到UNet训练流程中,便于模型训练过程的监控和分析。

2025-12-06 07:30:00 1158

原创 【动手学UNet】(7)主程序

【动手学UNet】系列教程提供完整的UNet图像分割实现指南,包含7个核心模块:项目创建、数据加载、模型实现、训练、保存/加载、评估和主程序。主程序(main.py)作为统一入口,支持训练、评估和单图推理三种模式,可通过命令行参数灵活配置。训练支持断点续训和烟雾测试;评估可计算Dice/IoU指标并保存结果;单图推理支持原图/真值/预测的三连图展示。

2025-12-05 07:30:00 978

原创 【动手学UNet】(6)模型推理与评估

【动手学UNet】系列教程提供完整的UNet模型实现指南,涵盖项目创建、数据加载、模型训练到推理评估全流程。在模型推理与评估部分(test_unet.py),教程详细介绍了如何加载验证集和训练好的模型权重,计算Dice系数和IoU等关键评估指标,并保存包含原图、真值和预测结果的可视化三连图。该模块支持快速评估模式,便于模型验证和调试,为图像分割任务提供完整的性能评估方案。

2025-12-04 08:00:00 814

原创 【动手学UNet】(5)保存,加载与可视化

本文介绍了UNet图像分割模型的保存、加载与可视化实现。在模型保存与加载部分,通过checkpoint.py模块实现了统一的模型权重、优化器状态和训练轮次的保存与恢复功能,支持断点续训和模型版本管理。可视化模块visualization.py则提供了分割结果的三联图展示功能,能够直观对比原图、真实掩膜和预测结果。文章提供了完整的代码实现和测试验证流程,确保模型状态的正确保存与恢复,为UNet模型的训练、评估和推理提供了完整的工具链支持。

2025-12-03 08:00:00 669

原创 【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿

本文详细解读 DeepSeek-V3.2 技术报告和 API 使用指南。DeepSeek-V3.2 新一代开源大型语言模型在推理能力和工具调用方面实现重大突破,模型已开源并更新至官方应用,为AI社区提供高性能开源选择。

2025-12-02 21:21:27 2291

原创 【youcans论文精读】VM-UNet-V2:面向医学图像分割的视觉 Mamba UNet 架构再思考

本文提出VM-UNetV2模型,创新性地结合视觉状态空间模块与语义细节融合机制,用于医学图像分割任务。针对现有CNN和Transformer模型在长程依赖建模与计算效率方面的不足,该模型通过VSS模块捕获广泛上下文信息,并采用SDI模块增强多层次特征融合。实验在7个公开医学数据集上验证了VM-UNetV2的优越性能,其不仅分割精度优于VM-UNet、UNetV2等对比模型,还具有更低的计算复杂度。该研究为SSM-based医学分割算法的发展提供了新思路,代码已开源。

2025-12-02 08:00:00 662

原创 【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构

本文提出首个纯基于状态空间模型(SSMs)的医学图像分割模型VM-UNet。针对现有CNN模型长程建模能力不足和Transformer模型计算复杂度高的问题,VM-UNet采用视觉状态空间(VSS)块构建非对称编解码器结构,在保证线性计算复杂度的同时增强长距离依赖建模能力。

2025-12-01 08:00:00 1036

原创 【医学影像 AI】视网膜基础语言-图像模型(FLAIR):通过文本监督编码专家知识

FLAIR,一个专用于视网膜眼底图像分析的视觉-语言基础模型。通过整合284,660张眼底图像和96种病理类别,FLAIR创新性地将专家知识以文本提示形式嵌入模型训练,包括病理细粒度特征描述和层级关系。实验表明,该模型在领域迁移和未知类别场景下展现出卓越的泛化能力,经轻量级微调后性能显著优于CLIP等通用模型及专用模型,为医学影像AI提供了专业化的基础模型解决方案。

2025-12-01 07:00:00 1684

原创 【youcans论文精读】U-Net v2:重新思考医学图像分割中 U-Net 的跳跃连接

U-Net v2 模型通过创新的SDI模块优化医学图像分割中的跳跃连接机制。SDI模块利用Hadamard乘积融合高层语义与低层细节特征,结合空间和通道注意力机制增强特征表达。该模型可无缝集成到各类编解码器网络,为医学图像分割提供高效解决方案。

2025-11-30 08:00:00 1019

原创 【youcans论文精读】U-Net:用于医学图像分割的 U型卷积神经网络

U-Net是一种用于医学图像分割的U型卷积神经网络。其核心创新在于对称的编码器-解码器结构,通过跳跃连接保留空间信息,实现精确分割。该网络在少量标注数据下表现优异,采用数据增强和加权损失函数提升性能。

2025-11-29 08:00:00 1526 2

原创 【动手学UNet】(4)UNet 模型的训练

本文介绍了【动手学UNet】系列教程中的模型训练部分,详细讲解了UNet图像分割模型的完整训练流程。内容包括训练脚本模块core/train_unet.py的功能实现,如数据加载、模型构建、损失计算和参数更新等关键环节。文章展示了如何通过测试程序验证训练链路的正确性,并介绍了训练过程中集成验证集评估、模型保存及TensorBoard日志记录等优化措施。

2025-11-29 08:00:00 1065

原创 【动手学UNet】(3)UNet 模型的实现

【动手学UNet】系列教程详细介绍了UNet模型的实现过程。文章通过unet.py代码展示了UNet网络的核心架构,包括编码器(Encoder)和解码器(Decoder)结构。代码实现了DoubleConv、Down、Up等关键模块,并支持可配置的输入通道和输出类别数。UNet类作为主模型,包含4层下采样结构,可选择双线性插值或转置卷积进行上采样。

2025-11-28 08:00:00 2093

原创 【动手学UNet】(2)数据加载

【动手学UNet】系列教程提供完整的UNet图像分割实现指南。数据加载模块(data_utils.py)是该系列的核心组件之一,主要功能包括:从目录读取图像与掩膜文件,进行预处理和尺寸统一化,转换为PyTorch张量格式。

2025-11-27 09:00:00 1127

人工智能培养方案_上海大学2020.pdf

上海大学 人工智能专业培养方案

2021-05-22

重邮信通院本科培养方案.pdf

重庆邮电大学 信通学院本科培养方案

2021-05-22

西邮物联网专业培养方案_2018.pdf

西安邮电大学 物联网专业培养方案

2021-05-22

人工智能培养方案_天津大学2019.pdf

天津大学 人工智能专业培养方案

2021-05-22

2021-NMMCM-A 外卖骑手的送餐危机.pdf

2021数维杯数模竞赛赛题A;2021-NMMCM-A 外卖骑手的送餐危机;数学建模;数模竞赛

2021-05-28

人工智能培养方案_东南大学2018.pdf

东南大学 人工智能专业培养方案

2021-05-22

大学生创新创业训练计划项目_广东省2020.xlsx

大学生创新创业训练计划项目_广东省2020.xlsx

2021-05-22

人工智能培养模式_上海理工2018.pdf

上海理工大学 人工智能培养方案 2018

2021-05-22

大学生创新创业训练计划项目_陕西省2020.xlsx

大学生创新创业训练计划项目_陕西省2020

2021-05-22

北邮信通本科培养方案_2018.pdf

北京邮电大学信通本科培养方案

2021-05-22

大学生创新创业训练计划项目_山东省2020.pdf

大学生创新创业训练计划项目_山东省2020

2021-05-22

大学生创新创业训练计划项目_河南省2020.pdf

大学生创新创业训练计划项目_河南省2020

2021-05-22

大学生创新创业训练计划项目_四川省2020.xlsx

大学生创新创业训练计划项目_四川省2020

2021-05-22

西邮通信培养方案_拔尖创新2020.pdf

西安邮电大学 通信工程专业(拔尖创新班)培养方案

2021-05-22

重邮信通院培养方案_IT精英班.pdf

重庆邮电大学 信通院培养方案_IT精英班

2021-05-22

大学生创新创业训练计划项目_江苏省2020.xlsx

大学生创新创业训练计划项目_江苏省2020

2021-05-22

大学生创新创业训练计划项目_湖南省2020.doc

大学生创新创业训练计划项目_湖南省2020

2021-05-22

2021-NMMCM-B 中小城市地铁运营与建设优化设计.pdf

2021数维杯数模竞赛赛题B;2021-NMMCM-B 中小城市地铁运营与建设优化设计;数学建模;数模竞赛

2021-05-28

2021-电工杯-A 高铁牵引供电系统运行数据分析及等值建模.pdf

数学建模;数模竞赛;2021-电工杯-A题:高铁牵引供电系统运行数据分析及等值建模

2021-05-28

2021-YRDMCM-B 锅炉水冷壁温度曲线.pdf

2021第一届长三角高校数学建模竞赛题目;2021-YRDMCM-B 锅炉水冷壁温度曲线.pdf

2021-05-29

欧瑞博智能体验馆设计标准

欧瑞博(ORVIBO)以科技美学、人居交互著称。欧瑞博全屋智能家居系统将灯光照明、暖通环境、门锁安防、门窗遮阳等设备连接成完整的智能化系统,支持触屏、语音、手势、按键、人脸识别和APP等交互方式。 超级智能面板是一个智能中枢,集智能网关、智能开关、空调面板、背景音乐、AI音箱与一体,给用户带来良好的交互体验。 欧瑞博的设计理念和发展模式较为适合酒店、公寓、别墅等定制设计的工程项目。随着通信技术的快速发展,物联网产品越来越丰富,这些源自电工照明品类的小型封闭系统的竞争力难以持续。

2023-03-10

Visual ChatGPT: Talking, Drawing and Editing with Visual F

Title:Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models 标题:Visual ChatGPT:使用 Visual Foundation 模型进行对话、绘图和编辑 作者:Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, Nan Duan 机构:Microsoft Researc Asia(微软亚洲研究院) 论文链接: https://arxiv.org/abs/2303.04671 开源代码: https://github.com/microsoft/visual-chatgpt

2023-03-15

2020中国智能家居生态发展白皮书

智能家居从概念提出至今已经历了20多年的持续演进。回顾智能家居的发展过程,经历了多个发展阶段。 起步于智能单品阶段:以产品为中心,通过各种传感技术检测参数、通信技术传输信号,发出指令对连接的通信、安防、照明、家电进行控制,重点在于远程控制,以增强用户使用的便捷性、舒适性。但各智能单品孤立分散、功能有限,用户智能体验并不明显。 发展于智能互联阶段:以场景为中心,基于物联网技术实现了各种智能设备的互联互通,根据不同应用场景同步转变状态,重点在于集成控制、联动控制,以增强用户使用的主动性、便利性,逐渐构建全屋智能家居。 突破于主动智能阶段:以用户为中心,基于人工智能和大数据技术,建立在个人数据分析、行为习惯理解、自主深度学习的基础上,基于用户需求提供实时化、个性化的智能服务。 目前,智能家居产业总体处于智能互联阶段,同时也正在向主动智能阶段探索尝试。

2023-03-10

2019中国智能家居发展白皮书

2019年,中国已成为全球最大的智能家电制造国、市场消费国。目前,智能家电类产品的市场份额最高,传统白色家电空调、冰箱和洗衣机的销售占比超过70%;而智能锁、智能音箱、家用摄像头等产品的市场增速较快,2017-2020年智能门锁销量的年复合增长率高达66%。

2023-03-10

HDL河东智能家居解决方案

河东电子(HDL)智能家居系统的优势在于通过AIoT中台技术支撑,与阿里、涂鸦、华为平台产品深度融合,兼容自有硬件和生态伙伴产品。系统支持智能面板、智能中控屏、智能手机、平板电脑多端场景联动,对设备进行控制和管理。但目前其核心产品还是照明、开关、网络和安防周边,尚未真正接入主流的家电、电子产品。 毅多智能控制屏可以实现对灯光、窗帘、空调、地暖、音乐、新风等的智能控制,其特点在于:(1)良好的UI交互体验;(2)常用功能和多种预设场景模式的快速访问;(3)允许用户自己设定场景、自定义快捷键,满足用户个性化需求。 多功能触控屏精巧智能,方悦系列面板美观简洁,可以定制功能与配色。

2023-03-10

HDL无线家居智能解决方案

河东电子(HDL)智能家居系统的优势在于通过AIoT中台技术支撑,与阿里、涂鸦、华为平台产品深度融合,兼容自有硬件和生态伙伴产品。系统支持智能面板、智能中控屏、智能手机、平板电脑多端场景联动,对设备进行控制和管理。但目前其核心产品还是照明、开关、网络和安防周边,尚未真正接入主流的家电、电子产品。 毅多智能控制屏可以实现对灯光、窗帘、空调、地暖、音乐、新风等的智能控制,其特点在于:(1)良好的UI交互体验;(2)常用功能和多种预设场景模式的快速访问;(3)允许用户自己设定场景、自定义快捷键,满足用户个性化需求。 多功能触控屏精巧智能,方悦系列面板美观简洁,可以定制功能与配色。

2023-03-10

带有 Opencv-contrib 的 OpenCV-Python 库

官方的 OpenCV-Python 库缺少一些涉及专利的或测试算法(例如 SURF、Multitracking),需要自己下载源码,编译生成 带有 OpenCV_contrib 接口的 OpenCV 库。 配套博文,参见:【youcans 的 OpenCV 学习课】1.2 编译生成带有 OpenCV_contrib 的 OpenCV 库(https://youcans.blog.csdn.net/article/details/128448875) 1. 工具下载与安装 2. 下载和编译 OpenCV 源码 3. 用 CMake 编译 OpenCV 源码 4. 用 Visual Studio 生成带有 OpenCV_contrib 接口的 OpenCV 库 5. 使用带有 OpenCV_contrib 接口的 OpenCV 库

2022-12-27

爱心源码-基于傅里叶描述符实现

本例程针对图像中银杏树叶的边界,分别用不同数量的傅里叶描述符重建边界。 子图1的原始图像是银杏树叶。子图2中的最大轮廓就是树叶外形曲线。 将树叶轮廓曲线视为离散周期信号进行傅里叶变换,用不同数量的傅里叶描述符重建边界曲线。子图3使用全部傅里叶系数重建轮廓曲线,完全复原了子图2中的树叶轮廓。 使用 1%的傅里叶系数作为描述符,进行傅里叶逆变换重建轮廓曲线,保留轮廓曲线的低频信息,可以描述轮廓曲线形状的基本特征,得到的是一颗“爱心”。

2022-12-11

2021-电工杯-B 光伏建筑一体化板块指数发展趋势分析及预测.pdf

数学建模;数模竞赛;2021-电工杯-B题:光伏建筑一体化板块指数发展趋势分析及预测

2021-05-28

2021-中青杯-C 在线教学的分析与研究.pdf

2021年第四届中青杯全国大学生数学建模竞赛;数学建模;2021-中青杯-C 在线教学的分析与研究

2021-05-29

2021-中青杯-A 汽车组装车间流水线物料配送问题.pdf

2021年第四届中青杯全国大学生数学建模竞赛;2021-中青杯-A 汽车组装车间流水线物料配送问题;数学建模

2021-05-29

2021-YRDMCM-A GoFun游长三角.pdf

2021第一届长三角高校数学建模竞赛题目;2021-YRDMCM-A GoFun游长三角

2021-05-29

2021-NMMCM-C 运动会优化比赛模式探索.pdf

2021数维杯数模竞赛赛题B;2021-NMMCM-C 运动会优化比赛模式探索;数学建模;数模竞赛

2021-05-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除