X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,1020和1225的重叠部分为1220
。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。
第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Sample Input
5 1 5 2 4 2 8 3 7 7 9
Sample Output
4
这是一道贪心的题。说到贪心就要首先想到排序。所以为了得到最大的覆盖区间,就要按线段的
起点从小到大排序,当起点相同时按照终点从大到小排序(这一点可能不太好理解,但是你想我
们是求最大覆盖区间的,什么时候区间覆盖最大?只有起点最小终点最大的线段才可能有最大的
覆盖区间,好好理解一下)。写的时候还要注意一下区间的替换,代码如下
#include<stdio.h>
#include<algorithm>
using namespace std;
struct node
{
int s,e;
}sta[50005];
bool cmp(node a,node b)
{
if (a.s==b.s)
return a.e > b.e;
else
return a.s < b.s;
}
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int n,i;
scanf("%d",&n);
for (i=0;i<n;i++)
scanf("%d %d",&sta[i].s,&sta[i].e);
sort(sta,sta+n,cmp);
node m = sta[0];
int ans = 0;
for (i=1;i<n;i++)
{
if (m.e>=sta[i].e)
ans = max(ans,sta[i].e-sta[i].s);
else
{
ans = max(ans,m.e-sta[i].s);//进行区间替换,换成区间长的
m = sta[i];
}
}
printf("%d\n",ans);
return 0;
}