线段线段

X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,1020和1225的重叠部分为1220

给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。

Input

第1行:线段的数量N(2 <= N <= 50000)。
第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)

Output

输出最长重复区间的长度。

Sample Input

5
1 5
2 4
2 8
3 7
7 9

Sample Output

4
这是一道贪心的题。说到贪心就要首先想到排序。所以为了得到最大的覆盖区间,就要按线段的
起点从小到大排序,当起点相同时按照终点从大到小排序(这一点可能不太好理解,但是你想我
们是求最大覆盖区间的,什么时候区间覆盖最大?只有起点最小终点最大的线段才可能有最大的
覆盖区间,好好理解一下)。写的时候还要注意一下区间的替换,代码如下
#include<stdio.h>
#include<algorithm>
using namespace std;
struct node
	{
		int s,e;
	}sta[50005];
bool cmp(node a,node b)
{
	if (a.s==b.s)
		return a.e > b.e;
	else
		return a.s < b.s;
}
int max(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	int n,i;
	scanf("%d",&n);
	for (i=0;i<n;i++)
		scanf("%d %d",&sta[i].s,&sta[i].e);
	sort(sta,sta+n,cmp);
	node m = sta[0];
	int ans = 0;
	for (i=1;i<n;i++)
	{
		if (m.e>=sta[i].e)
			ans = max(ans,sta[i].e-sta[i].s);
		else
		{
			ans = max(ans,m.e-sta[i].s);//进行区间替换,换成区间长的 
			m = sta[i];
		}
	}
	printf("%d\n",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值