某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
先把所有边按从小到大的顺序排序。然后,逐个选取,在选
取的过程中,如果查询到两个端点不在同一个集合,那么必
然选择它作为最小生成树的一部分,并合并这两个端点。
如果查询到这两个端点在同一个集合里,那么继续选取下一
条边,直至选取了n-1条边,算法结束
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int x,y,len;
}road[10005];
bool cmp(node a,node b)
{
return a.len < b.len;
}
int a[105];
int find(int x)
{
if (a[x]==x)
return x;
else
return a[x] = find(a[x]);
}
bool unite(int x,int y)
{
x = find(x);
y = find(y);
if (x!=y)
{
if (x<y)
a[y] = x;
else
a[x] = y;
return 1;
}
else
return 0;
}
int main()
{
int n;
while(scanf("%d",&n),n)
{
int i;
int k = n*(n-1)/2;
for (i=1;i<=n;i++)
a[i] = i;
for (i=0;i<k;i++)
scanf("%d %d %d",&road[i].x,&road[i].y,&road[i].len);
sort(road,road+k,cmp);
int sum = 0;
for (i=0;i<k;i++)
{
if (unite(road[i].x,road[i].y))
{
sum += road[i].len;
}
}
printf("%d\n",sum);
}
return 0;
}