LiMn2O4有一天在逸夫楼的FZ 131看门,到了中午他订了打卤馕外卖,没想到practer此时要和他抢打卤馕吃,怎么办呢?聪明的你需要想出一个方案,能让上面二位都满意,也就是他们分得的打卤馕大小的差最小
分的时候他们让LiMn2O4先从一块开始取连续的一部分(这些块是挨在一起的),剩下的留给practer
馕已经被切成了n块,每块有一个整数ai表示,ai代表这块打卤馕的在整个打卤馕占的角度, (1 ≤ ai ≤ 360) 。这N块的角度保证值和等于360度
Input
第一行有一个整数 n (1 ≤ n ≤ 360) 代表送过来的打卤馕切成的块数
接下来的一行里有 n个整数 ,每个ai代表这块打卤馕的角度,这n个数的和等于360
Output
输出一个整数,表示Limn2o4和practer分到打卤馕的角度的最小的差的绝对值
Example
Input
4 90 90 90 90
Output
0
Input
3 100 100 160
Output
40
Input
1 360
Output
360
Input
4 170 30 150 10
Output
0
Note
第一个例子里limn2o4可以拿1 和 2 这两块, practer拿 3 和4 . 答案就是 |(90 + 90) - (90 + 90)| = 0.
第三个例子里只有一个人能拿到打卤馕,答案就是|360 - 0| = 360.
在第四个例子里,limn2o4会拿到 1 和 4 ,剩下的给practer,也就是 2 和3 . 答案是 |(170 + 10) - (30 + 150)| = 0.
下面是示意图:
绿色区域和红色区域的面积相等,正两个人会分到相同大小的打卤馕
首先这是个圆。若要求差值最小,那么可以只考虑一个人所分的,并且所分的越接近180,
则二者的差值越小,因为总共为360.设一个人分的为sum,则差值就是|360-2*sum|,有一点
不好理解的就是为什么差值是二倍呢,假如两人都是180,如果此时一个人是180-a,那么另
一个人一定是180+a,所以差值就是2*a,二倍关系就好理解了
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[521];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int i,j;
for (i=0;i<n;i++)
scanf("%d",&a[i]);
int ans = 521;//只要大于360就行了
for (i=0;i<n;i++)
{
int sum = 0;
for (j=i;j<n;j++)
{
sum += a[j];
ans = min(ans,abs(360-sum*2));
}
}
printf("%d\n",ans);
}
return 0;
}