题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入输出格式
输入格式:
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式:
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入样例#1: 复制
2009
输出样例#1: 复制
3 3 2003
这个题目求任意一个大于九的奇数等于三个质数的和,题目说明了第一个质数要最小,其次第二个,
据此可以进行优化循环的次数。然后就是进入正题了 ,首先先要明白一件事,三个数相加为奇数,
只有两种可能
1.两个偶数加一个奇数.
2.三个奇数.
1.先判断前两个质数都是偶数的情况,因为偶数中只有2是素数,那么就只要判断这个(n-4)是否为素数,
如果是,就直接输出2,2,n-4。
2.如果这三个数都是质数,那么从i=3开始循环,并保证i为奇数并且i为素数,再在第二重循环里面让j=i
并保证j为奇数且j为素数,最后只要判断(n-i-j)是否为奇数且为素数就行了,满足就输出答案。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
bool prime(int n)
{
if (n<=1) return 0;
for (int i=2;i*i<=n;i++)
if (n%i==0)
return 0;
return 1;
}
int main()
{
int i,j,n;
scanf("%d",&n);
if (prime(n-4))//两个偶数加一个奇数.
printf("2 2 %d\n",n-4);
else//三个奇数.
{
for (i=3;i<n;i++)
if (prime(i))
for (j=i;j<n;j++)
if (prime(j) && prime(n-i-j))
{
printf("%d %d %d\n",i,j,n-i-j);
return 0;
}
}
return 0;
}