P1309 瑞士轮

题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于18951895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2 \times N2×N 名编号为 1-2N1−2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第11 名和第22 名、第 33 名和第 44名、……、第2K - 12K−1名和第2K2K名、…… 、第2N - 12N−1名和第2N2N名,各进行一场比赛。每场比赛胜者得11分,负者得 00分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第QQ 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入输出格式

输入格式:

 

第一行是三个正整数N,R ,QN,R,Q,每两个数之间用一个空格隔开,表示有 2 \times N2×N名选手、RR 轮比赛,以及我们关心的名次 QQ。

第二行是2 \times N2×N 个非负整数s_1, s_2, …, s_{2N}s1​,s2​,…,s2N​,每两个数之间用一个空格隔开,其中s_isi​表示编号为ii 的选手的初始分数。 第三行是2 \times N2×N 个正整数w_1 , w_2 , …, w_{2N}w1​,w2​,…,w2N​,每两个数之间用一个空格隔开,其中 w_iwi​ 表示编号为ii 的选手的实力值。

 

输出格式:

 

一个整数,即RR 轮比赛结束后,排名第QQ 的选手的编号。

 

输入输出样例

输入样例#1: 复制

2 4 2 
7 6 6 7 
10 5 20 15 

输出样例#1: 复制

1

说明

【样例解释】

【数据范围】

对于30\%30%的数据,1 ≤ N ≤ 1001≤N≤100;

对于50\%50%的数据,1 ≤ N ≤ 10,0001≤N≤10,000;

对于100\%100%的数据,1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s_1, s_2, …, s_{2N}≤10^8,1 ≤w_1, w_2 , …, w_{2N}≤ 10^81≤N≤100,000,1≤R≤50,1≤Q≤2N,0≤s1​,s2​,…,s2N​≤108,1≤w1​,w2​,…,w2N​≤108。

noip2011普及组第3题。

对于此题,最先想到的算法应该是每轮比赛前都用快排排一次,然后再根据选手的实力值决定胜负。

但是——时间复杂度非常非常非常······高!达到了O(R*(N*logN+N)) {实际上还要更多些} 。很明显,超时了。

再进一步想——————————

模拟后可以知道,每轮比赛结束后,胜利者和失败者两个集合的内部顺序是不会被打乱的。

因此,很容易就想到之前那个算法为什么不够高效了,因为所谓的快排效率高,是针对随机的数列的,

而这里每一轮比赛下来,有一半人的相对顺序已经确定了,所以快排就没有了优势。

因此,我们就想到了新方法——归并排序。

这样,每一轮比赛后用O(N)的时间归并一次,时间就够了。

空间不要忘了开两倍!!!

***值得注意的是,在第一轮比赛前,并不知道待参赛选手的排名,而这时又不可能得到任何其他的信息,

因为本来直接给出的初始值s就是无序的,所以要用快排;还要注意初始值相同的情况(这些都是细节,不再赘述)······

最后,下面给出pascal代码,仅供参考:
#include<stdio.h>
#include<string.h>
#include<algorithm> 
using namespace std;
const int maxm = 2e5 + 10;
struct node
{
	int id;
	int score;
	int power;
}stu[maxm],w[maxm],l[maxm];
bool cmp(node a,node b)
{
	if (a.score==b.score)
		return a.id < b.id;
	return a.score > b.score;
}
bool cmp2(int s1,int s2,int id1,int id2)
{
	if (s1==s2)
		return id1 < id2;
	return s1 > s2;
}
void merge(int ll,int rr)
{
	int l1 = ll,l2 = ll,k = ll;
	while (l1<=rr && l2<=rr)
		if (cmp2(w[l1].score,l[l2].score,w[l1].id,l[l2].id))
			stu[k++] = w[l1++];
		else stu[k++] = l[l2++];
	while (l1<=rr) stu[k++] = w[l1++];
	while (l2<=rr) stu[k++] = l[l2++];
}
int main()
{
	int n,r,q,i;
	scanf("%d %d %d",&n,&r,&q);
	for (i=1;i<=2*n;i++)
	{
		scanf("%d",&stu[i].score);
		stu[i].id = i;
	}
	for (i=1;i<=2*n;i++)
		scanf("%d",&stu[i].power);
	sort(stu+1,stu+2*n+1,cmp);
	while (r--)
	{
		int lo = 0,wi = 0;
		for (i=1;i<=2*n;i+=2)
		{
			if (stu[i].power>stu[i+1].power)
			{
				w[++wi] = stu[i];
				l[++lo] = stu[i+1];
				w[wi].score++;
				
			}
			else
			{
				l[++lo] = stu[i];
				w[++wi] = stu[i+1];
				w[wi].score++;
			}
		}
		merge(1,n);
	}	
	printf("%d\n",stu[q].id);
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值