题目描述
设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtreesubtree(也包含treetree本身)的加分计算方法如下:
subtreesubtree的左子树的加分× subtreesubtree的右子树的加分+subtreesubtree的根的分数。
若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n1,2,3,…,n)且加分最高的二叉树treetree。要求输出;
(1)treetree的最高加分
(2)treetree的前序遍历
输入输出格式
输入格式:
第11行:11个整数n(n<30)n(n<30),为节点个数。
第22行:nn个用空格隔开的整数,为每个节点的分数(分数<100<100)。
输出格式:
第11行:11个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000)。
第22行:nn个用空格隔开的整数,为该树的前序遍历。
输入输出样例
输入样例#1: 复制
5 5 7 1 2 10
输出样例#1: 复制
145 3 1 2 4 5
结合问题,如果整棵树的权值最大,必然有左子树的权值最大,右子树的权值也最大,符合最优性原理。
而却不是一道树规的题目。因为我们可以用区间动规的模型解决掉:直接定义一个f[i][j]表示从i到j的最大值,则
f[i][j]=max(f[i][k-1]*f[k+1][j]+f[k][k])
枚举k即可。
#include<bits/stdc++.h>
using namespace std;
const int M = 35;
int n,f[M][M],root[M][M];//root[a][b]表示a,b区间里父节点的编号
int get_max(int left,int right)
{
if (left>right) return 1;
if (f[left][right]==0)
{
for (int i=left;i<=right;i++)
{
int t = f[left][right];
f[left][right] = max(get_max(left,i-1)*get_max(i+1,right)+f[i][i],f[left][right]);
if (t<f[left][right])
root[left][right] = i;
}
}
return f[left][right];
}
void dfs(int left,int right)
{
if (left>right) return;
else
{
printf("%d ",root[left][right]);
dfs(left,root[left][right]-1);
dfs(root[left][right]+1,right);
}
}
int main()
{
//freopen("in.txt","r",stdin);
int i,m;
scanf("%d",&n);
for (i=1;i<=n;i++)
{
scanf("%d",&m);
f[i][i] = m;
root[i][i] = i;
}
printf("%d\n",get_max(1,n));
dfs(1,n);
return 0;
}