P1040 加分二叉树

题目描述

设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtreesubtree(也包含treetree本身)的加分计算方法如下:

subtreesubtree的左子树的加分× subtreesubtree的右子树的加分+subtreesubtree的根的分数。

若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n1,2,3,…,n)且加分最高的二叉树treetree。要求输出;

(1)treetree的最高加分

(2)treetree的前序遍历

输入输出格式

输入格式:

 

第11行:11个整数n(n<30)n(n<30),为节点个数。

第22行:nn个用空格隔开的整数,为每个节点的分数(分数<100<100)。

 

输出格式:

 

第11行:11个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000)。

第22行:nn个用空格隔开的整数,为该树的前序遍历。

 

输入输出样例

输入样例#1: 复制

5
5 7 1 2 10

输出样例#1: 复制

145
3 1 2 4 5
结合问题,如果整棵树的权值最大,必然有左子树的权值最大,右子树的权值也最大,符合最优性原理。

而却不是一道树规的题目。因为我们可以用区间动规的模型解决掉:直接定义一个f[i][j]表示从i到j的最大值,则

f[i][j]=max(f[i][k-1]*f[k+1][j]+f[k][k])

枚举k即可。

 

#include<bits/stdc++.h>
using namespace std;
const int M = 35;
int n,f[M][M],root[M][M];//root[a][b]表示a,b区间里父节点的编号

int get_max(int left,int right)
{
	if (left>right) return 1;
	if (f[left][right]==0)
	{
		for (int i=left;i<=right;i++)
		{
			int t = f[left][right];
			f[left][right] = max(get_max(left,i-1)*get_max(i+1,right)+f[i][i],f[left][right]);
			if (t<f[left][right])
				root[left][right] = i;
		}
	}
	return f[left][right];
}

void dfs(int left,int right)
{
	if (left>right) return;
	else
	{
		printf("%d ",root[left][right]);
		dfs(left,root[left][right]-1);
		dfs(root[left][right]+1,right);
	}
}

int main()
{
	//freopen("in.txt","r",stdin);
	int i,m;
	scanf("%d",&n);
	for (i=1;i<=n;i++)
	{
		scanf("%d",&m);
		f[i][i] = m;
		root[i][i] = i;
	}
	printf("%d\n",get_max(1,n));
	dfs(1,n);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值