题目描述:
给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。
如:
[]是匹配的
([])[]是匹配的
((]是不匹配的
([)]是不匹配的
输入描述:
第一行输入一个正整数N,表示测试数据组数(N<=10) 每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符,S的长度不超过100
输出描述:
对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。每组测试输出占一行
样例输入:
复制
4 [] ([])[] ((] ([)]
样例输出:
0 0 3 2
提示:
没有提示哦
来源:
区间型动态规划,设dp[i][j]表示在字符串s中i位置到j位置所需要添加的最少的字符
(i <= j)
有两种情况:
1、dp[i][j] = dp[i+1][j] + 1;
表示:在i到j之间没有与s[i]相匹配的括号,则必须添加一个字符来与之匹配,问题就转化
为:从i+1位置到j位置所需要添加的最少的字符+1。
2、dp[i][j] = min{ dp[i+1][k-1] + dp[k+1][j] }; (i < k <= j)
表示:在i到j之间找到一个k使得s[i]与s[k]相匹配,则问题就转化为求:从i+1到k-1所需要
添加的最少字符个数+从k+1到j之间所需要添加的最少字符个数(即dp[i+1][k-1] + dp[k+1][j])。
因为k可能有多个,所以在其中所有的k的情况中取最小的。
#include<bits/stdc++.h>
using namespace std;
char s[110];
int dp[110][110];
bool check(int i,int j)
{
if ((s[i]=='('&&s[j]==')') || (s[i]=='['&&s[j]==']'))
return 1;
return 0;
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int i,j,k;
scanf("%s",s+1);
int len = strlen(s+1);
memset(dp,0,sizeof(dp));
for (i=1;i<=len;i++)
dp[i][i] = 1;
for (i=len-1;i>=1;i--)
{
for (j=i;j<=len;j++)
{
dp[i][j] = dp[i+1][j] + 1;
for (k=i+1;k<=j;k++)
{
if (check(i,k))
dp[i][j] = min(dp[i][j],dp[i+1][k-1]+dp[k+1][j]);
}
}
}
printf("%d\n",dp[1][len]);
}
return 0;
}