计算机视觉
文章平均质量分 93
秦始皇赢政
这个作者很懒,什么都没留下…
展开
-
主要的注意力机制
主要的注意力机制通道&空间注意力SE-NetSqueeze-and-Excitation Networks》发表于CVPR 2018,是CV领域将注意力机制应用到通道维度的代表作,后续大量基于通道域的工作均是基于此改进SqueezeFsqF_{sq}Fsq利用全局平均池化(Global Average Pooling, GAP) 操作将每个通道的二维特征(HxW)压缩为1个实数,论文是通过平均值池化的方式实现。这属于空间维度的一种特征压缩,因为这个实数是根据二维特征所有值算出来的,所以原创 2021-09-05 15:12:18 · 3724 阅读 · 0 评论 -
SENet
计算机视觉中的注意力机制Squeeze-and-Excitation NetworksSQUEEZE-AND-EXCITATION BLOCKSSqueeze:全局信息嵌入Excitation: 自适应重新校准Squeeze-and-Excitation Networks《Squeeze-and-Excitation Networks》发表于CVPR 2018,是CV领域将注意力机制应用到通道维度的代表作,后续大量基于通道域的工作均是基于此进行改进的。Squeeze-andExcitation (SE原创 2021-09-05 10:12:34 · 233 阅读 · 0 评论