卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。
输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
输入样例:
6
3 5 6 7 8 11
输出样例:
7 6
解题思路:这道题关键就是”覆盖问题",怎么才能保证被覆盖的不被重复计算,而且前面的数可能被后面的覆盖。我首先想到的就是为每个数设置一个标志flag,首先都初始化设为"1",把它所能覆盖的数设置为"0",这样到最后标志位为"1"的就是关键数。
废话不多说上代码:
#include<stdio.h>
#define M 100
int main(){
int k;
scanf("%d", &k);
int num[k][2];//设置一个二维数组,第二列表示第一列的数的状态
int i;
for(i = 0; i<k; i++){
scanf("%d", &num[i][0]);
num[i][1] = 1;//标志位,初始化为1
}
int m, n;
for ( i = 0; i < k; i++)
{
if( num[i][1] != 0){
n = num[i][0];
while( n != 1){
if((n%2) != 0){
n = (3*n+1)/2;
for(m = 0; m<k; m++){//遍历数组,可以覆盖将标志位置为0
if((num[m][1] != 0)&& (n == num[m][0]) ){
num[m][1] = 0;
}
}
}
else{
n = n/2;
for(m = 0; m<k; m++){
if((num[m][1] != 0)&& (n == num[m][0]) ){
num[m][1] = 0;
}
}
}
}
}
}
int tmp[M]={0};
int count = 0;
for ( i = 0; i < k; i++)//将标志位为1的数字输出
{
if(num[i][1] == 1){
tmp[count] = num[i][0];
count++;
}
}
for(i = 0; i<count-1; i++){//降序排列
for ( m = i+1; m < count; m++)
{
if(tmp[i] < tmp[m]){
int t;
t = tmp[i];
tmp[i] = tmp[m];
tmp[m] = t;
}
}
}
for(i = 0; i<count; i++){//输出
if(i != (count-1)){
printf("%d ", tmp[i]);
}
else
{
printf("%d", tmp[i]);
}
}
return 0;
}