自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 集成学习boosting和bagging

集成学习和adaboost

2022-11-20 20:26:03 982

原创 Cart决策树算法原理学习

cart决策树原理学习

2022-11-19 19:44:58 1230

原创 搭建Fabric网络(错误排查版,包成功)

搭建了Fabric网络,并且分析了错误原因

2022-11-10 23:08:36 458

原创 图论Dijkstra算法模板和应用

一般有向加权图的输入是三元组[(u,v,w)],代表u到v这条边的权重为w,记录一下三元组转为图的模板。目的是求图中一个节点(k)到某一个节点的最短距离,或者最大距离,使用Dijkstra算法要求图是。times为输入的三元组数组。...

2022-07-23 20:50:14 337

原创 跨链bitxhub部署教程(上)

这里写自定义目录标题跨链bitxhub部署教程操作系统安装Go语言并添加环境变量安装docker安装docker-compose安装gcc安装bitxhub安装goduck启动以太坊私链启动Fabric 私链编译网关编译以太坊插件编译 Fabric插件Fabric 文件目录相关配置ETH 文件目录相关配置初始化以太坊配置目录初始化Fabric配置目录新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入跨链bitxhub部署教程最近在因为老师的原因要使用Bitxhub跨链工具

2022-03-14 23:01:06 13292 37

转载 五、集成方法

#异常检测——高维数据异常检测转载于datawhale主要内容包括:Feature Bagging孤立森林文章目录1、引言2、Feature Bagging3、Isolation Forests4、总结5、练习参考资料1、引言在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积)会以指数级别增长,使数据变得稀疏,这便是维度诅咒的难题。维度诅咒不止给异常检测带来了挑战,对距离的计算,聚类都带来了难题。例如基于邻近度的方法是在所有维度使用距离函数来定义局部性,但是,在

2021-05-23 19:06:59 1594

转载 四、基于邻近度的方法

#异常检测——基于相似度的方法转载于datawhale主要内容包括:基于距离的度量基于密度的度量文章目录1、概述2、基于距离的度量2.1 基于单元的方法2.2 基于索引的方法3、基于密度的度量3.1 k-距离(k-distance(p)):3.2 k-邻域(k-distance neighborhood):3.3 可达距离(reachability distance):3.4 局部可达密度(local reachability density):3.5 局部异常因子:参考资料1、概述  “

2021-05-20 15:58:20 665

转载 三、异常检测-线性模型

#异常检测——线性相关方法最近学习异常检测,觉得很不错,记录一下主要内容包括:线性回归主成分分析1、引言  真实数据集中不同维度的数据通常具有高度的相关性,这是因为不同的属性往往是由相同的基础过程以密切相关的方式产生的。在古典统计学中,这被称为——回归建模,一种参数化的相关性分析。  一类相关性分析试图通过其他变量预测单独的属性值,另一类方法用一些潜在变量来代表整个数据。前者的代表是 线性回归,后者一个典型的例子是 主成分分析。本文将会用这两种典型的线性相关分析方法进行异常检测。  需

2021-05-17 14:37:13 147

转载 二、基于统计学的方法

#异常检测——基于统计学的方法最近在学习异常检测,datawhale的资料很不错,保存一波主要内容包括:高斯分布箱线图HBOS文章目录1、概述2、参数方法3、非参数方法4、基于角度的方法5、HBOS5、总结参考资料1、概述统计学方法对数据的正常性做出假定。**它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。**统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率

2021-05-14 19:37:47 227

转载 一、异常检测概述

最近学习datawhale的异常检测,觉得资料很不错,所以转载一波1、什么是异常检测异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行为差异大的数据。识别如信用卡欺诈,工业生产异常,网络流里的异常(网络侵入)等问题,针对的是少数的事件。1.1 异常的类别点异常(point anomalies)指的是少数个体实例是异常的,大多数个体实例是正常的,例如正常人与病人的健康指标;条件异常(conditional anomalies),又称上下文异常,指的是在特

2021-05-10 21:50:14 1104

原创 anaconda安装PyFlux

安装一个处理时间序列的包,直接pip install pyflux会报错,也不太好解决。conda install -c MZH PyFlux小伙伴给说用这个安装,的确一下就好了

2020-03-11 20:32:43 2221 3

原创 pandas将DataFrame中的重复项挑出

a = df.drop_duplicates(subset=['微博id'],keep='first')b = df.drop_duplicates(subset=['微博id'],keep=False)f=a.append(b).drop_duplicates(subset=['微博id'],keep=False)即将DataFrame中微博id这一series中的重复项挑出来了,f就...

2020-03-11 20:22:29 1619

原创 pandas处理文件打不开

在使用pd.read_csv的时候,报错说编码问题,试了各种问题,最后小伙伴给我说了用这个可以def re_encode(path): with open(path, 'r', encoding='GB2312', errors='ignore') as file: lines = file.readlines() with open(path, 'w', e...

2020-03-11 20:19:57 632

原创 pandas把nan替换

df = df.fillna(0.inplace=True)#替换为0df = df.fillna('',inplace=True)#替换为空字符串

2020-03-11 20:15:58 9583 1

原创 LeNet

卷积神经网络:使用全连接层的局限性:图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。使用卷积层的优势:卷积层保留输入形状。 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。LeNet模型:LeNet分为卷积层块和全连接层块两个部分。如图:图中6@代表...

2020-02-19 21:09:11 178

原创 卷积神经网络

卷积:输入一个图像,用一个卷积核在图像上面扫描,得到一个新的图像。代码实现:import torch import torch.nn as nndef corr2d(X, K): H, W = X.shape h, w = K.shape Y = torch.zeros(H - h + 1, W - w + 1) for i in range...

2020-02-17 23:17:29 179

原创 梯度消失与梯度爆炸

梯度消失与梯度爆炸:当神经网络的层数较多时,模型的数值稳定性容易变差假设一个层数为L的多层感知机的第层的权重参数为,输出层的权重参数为。为了便于讨论,不考虑偏差参数,且设所有隐藏层的激活函数为恒等映射(identity mapping)。给定输入,多层感知机的第l层的输出。此时,如果层数l较大,的计算可能会出现衰减或爆炸。举个例子,假设输入和所有层的权重参数都是标量,如权重参数为0.2和5...

2020-02-17 22:18:53 100

原创 线性回归

线性回归1.数据集生成2.损失函数定义3.随机梯度下降Softmaxsoftmax函数如下def softmax(X): X_exp = X.exp() partition = X_exp.sum(dim=1, keepdim=True) return X_exp / partition # 这里应用了广播机制1.定义模型2.定义损失函数...

2020-02-14 20:23:33 107

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除