- 博客(9)
- 收藏
- 关注
原创 Lasso回归系列四:Group Lasso,Sparse Group Lasso
Lasso变体:Group Lasso,Sparse Group Lasso
2022-11-24 11:46:11 5002
原创 DenseNet和ResNet的区别有哪些
DenseNet和ResNet的区别有哪些ResNetDenseNet1贡献提出残差学习来解决网络加深出现的退化问题提出稠密shortcuts来缓解梯度消失问题,加强特征传播,实现特征重用,大大减少了参数量2当前层的输入不同∑i=0lXi\sum_{i=0}^{l}{X_i}∑i=0lXi(前面所有层输输出相加)Concate(X0,X1,...,Xl)Concate(X_0,X_1,...,X_l)Concate(X0,X1,...,Xl)(通道维度相
2022-05-17 22:43:35 1311
原创 Batch Normalization的原理和作用
Batch Normalization的原理和作用论文链接:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift(Machine Learning 2015)BN是什么在神经网络中,每一层的输出是下一层的输入,神经网络通过反向传播调整参数。但是我们知道在反向传播的过程中,每一层的参数根据前一层参数变化前的输出进行参数的调整,区别于SVM这些有固定输入的模型,这就导致神经网
2022-05-04 22:10:35 2395
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人