Storm
人生路且修且行
大数据开发,一起探讨一起进步吧
展开
-
初识Storm
大数据第16天-storm基础 Storm是个实时的、分布式以及具备高容错的计算系统 实时性—进程常驻内存 数据少量经过磁盘,在内存中处理 分布式—集群操作 高容错—节点宕机,信息处理不完整(acker机制来解决这些问题)Storm计算模型Tuple – 元组,Stream中最小数据组成单元Spout – 数据源 (假) 发送数据/推送数据 本身不会产生...原创 2019-06-23 19:23:30 · 191 阅读 · 0 评论 -
Storm架构及搭建
大数据第17天-Storm架构及搭建架构 Nimbus 分配任务、资源调度、上传jar包 ZooKeeper 代理协调、健康检查(心跳) Supervisor 接收Nimbus任务、开启/关闭自己管理的worker进程(可以开启n个woker) Worker 运行具体处理运算组件的进程(每个Worker对应执行一个Topology的子集) 执行任务(可以执行n个ta...原创 2019-06-24 16:58:46 · 371 阅读 · 0 评论 -
Storm容错机制、Drpc、kafka集群搭建
Storm-容错机制、Drpc、kafkaStorm-容错机制架构 Nimbus 分配任务、资源调度、上传jar包 ZooKeeper 代理协调、健康检查(心跳) Supervisor 接收Nimbus任务、开启/关闭自己管理的worker进程(可以开启n个woker) Worker 运行具体处理运算组件的进程(每个Worker对应执行一个Topology的子集) ...原创 2019-06-25 21:22:02 · 206 阅读 · 0 评论 -
Storm事务详解
Storm事务ack 无法保证数据不被重复计算,但是可以保证数据至少被正确使用一次 将包装的数据流做16位的二进制streamID,每发生stream流交互时将前后的ID进行异或运算,最终异或结果为0,则数据传递成功没有故障;若传递故障则推送给上一个节点重新发送。tips: 与 全1为1,有0则0 要求严格 或 有1为1,全0为0 要求不严 异或 相异为1,相...转载 2019-06-27 08:04:21 · 402 阅读 · 0 评论